首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RNase E, an RNA processing enzyme from Escherichia coli.   总被引:18,自引:0,他引:18  
An activity, RNase E, was purified about 100-fold from Escherichia coli cells, it can process p5 rRNA from a 9 S RNA molecule which accumulates in a mutant of E. coli defective in the maturation of 5 S rRNA. The enzyme requires Na+, K+, or NH4+, and Mg2+ or Mn2+. The molecular weight of the enzyme is about 70,000 and its pH optimum is 7.6 to 8.0. Its temperature optimum is around 30 degrees C, and it can be irreversibly inactivated at 50 degrees C. It has a very high degree of specificity but the reaction can be inhibited by nonspecific RNAs. We interpret its mode of action in producing p5 RNA as being accomplished in two steps, 9 S RNA is first processed to 7 S and 4 S, and subsequently 7 S is further processed to p5.  相似文献   

2.
7 S RNA accumulates at non-permissive temperatures in an RNAase E strain containing the recombinant plasmid pJR3Δ which carries a single 5 S rRNA gene and expression sequences. 7 S RNA is a processing intermediate that contains the complete sequence of 5 S rRNA as well as a stem-and-loop structure encoded by the terminator of rrnD. 7 S RNA can be processed in vitro by RNAase E. Structural analysis of the products (5 S rRNA and the stem) of in vitro processing of 7 S RNA revealed that the cleavage site of RNAase E in 7 S RNA is 3 nucleotides downstream from the 3′ end of the mature 5 S rRNA. The cleavage generates 3′-hydroxyl and 5′-phosphate termini.  相似文献   

3.
Four temperature-sensitive RNase P mutants were analyzed for the accumulation of 10 S RNA. In the 10 S region of the polyacrylamide gel two molecules appear, a and b. While the level of 10 Sa seems to be affected in some of the mutants, the 10 Sb molecule was not found in rnpB mutants. A plasmid (pL2), which contains Escherichia coli DNA sequences that complement, at least partially, rnp mutations, directs the synthesis of 10 Sb RNA. The presence of the pL2 plasmid complements the rnpA49, rnpB3187 and the rnpC241 mutations, as revealed by colony formation at “non-permissive” temperatures. However, the complementation of the rnpA49 mutation is much better than that of the other mutations. The complementation can also be measured by the increased level of RNase P activity in extracts. 10 Sa and b RNAs are unique among all RNAs tested thus far, since they are stable during exponential growth at 30 °C and 37 °C. However, at higher temperatures, such as 43 °C, the molecules are somewhat less stable, and they become rather labile when RNA synthesis is blocked by rifampicin. Structural analysis revealed that the 10 Sa and 10 Sb RNA molecules have dissimilar sequences.  相似文献   

4.
5.
A stepwise model for double-stranded RNA processing by ribonuclease III   总被引:5,自引:0,他引:5  
RNA interference is mediated by small interfering RNAs produced by members of the ribonuclease III (RNase III) family represented by bacterial RNase III and eukaryotic Rnt1p, Drosha and Dicer. For mechanistic studies, bacterial RNase III has been a valuable model system for the family. Previously, we have shown that RNase III uses two catalytic sites to create the 2-nucleotide (nt) 3' overhangs in its products. Here, we present three crystal structures of RNase III in complex with double-stranded RNA, demonstrating how Mg(2+) is essential for the formation of a catalytically competent protein-RNA complex, how the use of two Mg(2+) ions can drive the hydrolysis of each phosphodiester bond, and how conformational changes in both the substrate and the protein are critical elements for assembling the catalytic complex. Moreover, we have modelled a protein-substrate complex and a protein-reaction intermediate (transition state) complex on the basis of the crystal structures. Together, the crystal structures and the models suggest a stepwise mechanism for RNase III to execute the phosphoryl transfer reaction.  相似文献   

6.
7.
A strain of Escherichia coli lacking RNAase III and containing thermolabile RNAase E and RNAase P was labeled with 32Pi at a non-permissive temperature. RNA molecules were separated by two-dimensional polyacrylamide gel electrophoresis. Most of the small RNA species were isolated and analyzed for the presence of 5′ nucleoside triphosphates. In 16 of the 22 species analyzed a significant number of the individual molecules contained 5′ di or triphosphates. We conclude, therefore, that very little endonucleolytic RNA processing occurs in the absence of the three RNA processing enzymes RNAase III, RNAase E and RNAase P.  相似文献   

8.
The modification of proteins with ubiquitin is an important cellular mechanism for targeting abnormal or short-lived proteins for degradation.Ubiquitin-conjugating enzyme E2 D2 is a protein that is encoded by the UBE2D2 gene.Here,we report a lamprey(La UBE2D2)gene which contained 441-bp open reading frame(ORF)encoding 147 amino acids with a typical UBC domain.Real-time PCR assay showed that the highest expression of the protein in adult lamprey was in the leukocytes,the lowest expression was in the skin,kidney and liver.The high conservation in amino acid sequence of the La UBE2D2protein with the UBE2D2s from Homo sapiens,Danio rerio,Oreochromis niloticus and Takifugu rubripes,implied that it had similar function with UBE2D2proteins from other species.  相似文献   

9.
10.
Summary Mutations in theRNA1 gene ofSaccharomyces cerevisiae, which encodes an essential cytosolic protein, affect the production and processing of all major classes of RNA. The mechanisms underlying these effects are not at all understood. Detailed comparative sequence analyses revealed that the RNA1 protein belongs to a superfamily, the members of which contain repetitive leucine-rich motifs (LRM). Within this superfamily RNA1 is most closely related to the ribonuclease/angiogenin inhibitor (RAI), which is a tightly binding inhibitor of ribonucleolytic activities in mammals. These results not only provide important clues to the structure, function and evolution of the RNAI protein, but also have intriguing implications for possible novel functions of RAI.  相似文献   

11.
B D James  G J Olsen  J S Liu  N R Pace 《Cell》1988,52(1):19-26
Secondary structure models for the ribonuclease (RNAase) P RNAs of Bacillus subtilis and E. coli were derived by a phylogenetic comparative analysis of published sequences as well as four novel ones. The RNAase P RNA genes from Bacillus megaterium, Bacillus brevis, Bacillus stearothermophilus, and Pseudomonas fluorescens were cloned, sequenced, and compared with the other available sequences. Regions of pairing were identified by the occurrence of homologous complementary sequences that vary among the compared molecules. A common core of primary and secondary structure can be identified in all these RNAase P RNAs. The previously noted striking differences between the Bacillus and the enteric RNAase P RNAs arise not only from point mutations, but from the addition or deletion of structural domains. The primary and secondary structural features that are common to all of the RNAase P RNAs are likely to be the elements involved in the binding and cleavage of tRNA precursors, and in the interaction with the RNAase P protein.  相似文献   

12.
The level of 10Sb (M1) RNA, the RNA of RNase P, is very low in growing cultures of rnpB mutants. Northern transfer experiments suggested that these strains accumulate no more than 10% of the wild-type level of 10Sb RNA. However, there is no indication that there is a limiting amount of RNase P activity in these mutants in vivo. A plasmid that directs the synthesis of 10Sb RNA does not complement the rnpB mutants, even though there is only a single gene for 10Sb RNA in the Escherichia coli genome. The 10Sb RNA synthesized from this plasmid is equivalent to wild-type 10Sb RNA since it can replace it in the reconstitution of RNase P. The 10Sb RNA, which is a rather stable molecule, is unstable in the presence of the rnpB mutation. This could explain why rnpB mutants do not accumulate 10Sb RNA. An F' plasmid that contains DNA from the rnpB region of the chromosome complements an rnpB mutant in vivo and in vitro, and it also contains the 10Sb RNA gene. A number of possible explanations for these phenomena are discussed.  相似文献   

13.
14.
Gan J  Tropea JE  Austin BP  Court DL  Waugh DS  Ji X 《Cell》2006,124(2):355-366
Members of the ribonuclease III (RNase III) family are double-stranded RNA (dsRNA) specific endoribonucleases characterized by a signature motif in their active centers and a two-base 3' overhang in their products. While Dicer, which produces small interfering RNAs, is currently the focus of intense interest, the structurally simpler bacterial RNase III serves as a paradigm for the entire family. Here, we present the crystal structure of an RNase III-product complex, the first catalytic complex observed for the family. A 7 residue linker within the protein facilitates induced fit in protein-RNA recognition. A pattern of protein-RNA interactions, defined by four RNA binding motifs in RNase III and three protein-interacting boxes in dsRNA, is responsible for substrate specificity, while conserved amino acid residues and divalent cations are responsible for scissile-bond cleavage. The structure reveals a wealth of information about the mechanism of RNA hydrolysis that can be extrapolated to other RNase III family members.  相似文献   

15.
When the RNA processing enzyme RNAase E is inactivated in an Escherichia coli strain carrying derivatives of the colicin E1 plasmid, a small RNA, about 100 nucleotides long, accumulates. Structural analysis of this RNA showed that it is RNA I, the RNA that inhibits plasmid DNA synthesis. RNA I is a specific substrate for RNAase E and the cleavage takes place between the fifth and sixth nucleotides from the 5' end of the molecule. This is only the second natural RNA substrate that has been found, so far, for the RNA processing enzyme ribonuclease E, the other being a precursor for 5 S ribosomal RNA. It is remarkable that nine nucleotides around the cleavage sites are identical in both substrates: (Formula: see text). Therefore, we suggest that at least part of the interaction between RNAase E and its substrate is controlled by these nine nucleotides.  相似文献   

16.
Endonucleolytic cutting by the essential Escherichia coli ribonuclease RNaseE has a central role in both the processing and decay of RNA. Previously, it has been shown that an oligoribonucleotide corresponding in sequence to the single-stranded region at the 5' end of RNAI, the antisense regulator of ColE1-type plasmid replication, is efficiently cut by RNaseE. Combined with the knowledge that alteration of the structure of stem-loops within complex RNaseE substrates can either increase or decrease the rate of cleavage, this result has led to the notion that stem-loops do not serve as essential recognition motifs for RNaseE, but can affect the rate of cleavage indirectly by, for example, determining the single-strandedness of the site or its accessibility. We report here, however, that not all oligoribonucleotides corresponding to RNaseE-cleaved segments of complex substrates are sufficient to direct efficient RNaseE cleavage. We provide evidence using 9 S RNA, a precursor of 5 S rRNA, that binding of structured regions by the arginine-rich RNA- binding domain (ARRBD) of RNaseE can be required for efficient cleavage. Binding by the ARRBD appears to counteract the inhibitory effects of sub-optimal cleavage site sequence and overall substrate conformation. Furthermore, combined with the results from recent analyses of E. coli mutants in which the ARRBD of RNase E is deleted, our findings suggest that substrate binding by RNaseE is essential for the normal rapid decay of E. coli mRNA. The simplest interpretation of our results is that the ARRBD recruits RNaseE to structured RNAs, thereby increasing the localised concentration of the N-terminal catalytic domain, which in turn leads to an increase in the rate of cleavage.  相似文献   

17.
18.
Cloning of E. coli pnp gene from an episome   总被引:13,自引:0,他引:13  
  相似文献   

19.
2,2'-p-Phenylene bis[6-(4-methyl-1-piperazinyl)]benzimidazole, 2,2'-bis(3,5-dihydroxyphenyl)-6,6'-bis benzimidazole, and 2,2'-bis(4-hydroxyphenyl)-6,6'-bis benzimidazole are shown by UV-visible and fluorescence spectrophotometry to be strong ligands for tRNA, giving simple, hyperbolic binding isotherms with apparent dissociation constants in the micromolar range. Hydroxyl radical footprinting indicates that they may bind in the D and T loops. On the basis of this tRNA recognition as a rationale, they were tested as inhibitors of the processing of precursor tRNAs by the RNA subunit of Escherichia coli RNase P (M1 RNA). Preliminary studies show that inhibition of the processing of Drosophila tRNA precursor molecules by phosphodiester bond cleavage, releasing the extraneous 5'-portion of RNA and the mature tRNA molecule, was dependent on both the structure of the inhibitor and the structure of the particular tRNA precursor substrate for tRNA(Ala), tRNA(Val), and tRNA(His). In more detailed followup using the tRNA(His) precursor as the substrate, experiments to determine the concentration dependence of the reaction showed that inhibition took time to reach its maximum extent. I(50) values (concentrations for 50% inhibition) were between 5.3 and 20.8 microM, making these compounds among the strongest known inhibitors of this ribozyme, and the first inhibitors of it not based on natural products. These compounds effect their inhibition by binding to the substrate of the enzyme reaction, making them examples of an unusual class of enzyme inhibitors. They provide novel, small-molecule, inhibitor frameworks for this endoribonuclease ribozyme.  相似文献   

20.
RNA as an enzyme     
The catalytic activity of ribonucleic acid is reviewed, with the intervening sequence (IVS) of the ribosomal RNA precursor of Tetrahymena serving as a major example. The IVS catalyzes its own excision from the precursor RNA and at the same time ligation of the flanking sequences, a reaction termed self-splicing. The excised IVS RNA can act as an enzyme to catalyze sequence-specific cleavage and ligation reactions on substrate RNA molecules. The RNA polymerization activity of the IVS supports the possibility that RNA catalysis could have been important in establishing a prebiotic self-replicating system. Other systems in which RNA catalysis has been found include related group I IVSs, group II IVSs, ribonuclease P, and certain plant infectious RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号