首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The roles that leaf nitrate content and nitrate flux play in regulating the levels of nitrate reductase activity (NRA) were investigated in 8- to 14-day old maize (Zea mays L.) plants containing high nitrate levels while other environmental and endogenous factors were constant. The nitrate flux of intact plants was measured from the product of the transpiration rate and the concentration of nitrate in the xylem. NRA decreased when the seedlings were deprived of nitrate. The nitrate flux and the leaf nitrate content also decreased. When nitrate was resupplied to the roots, all three parameters increased.  相似文献   

2.
Primary and secondary metabolites of inorganic nitrogen metabolism were evaluated as inhibitors of nitrate reductase (EC 1.6.6.1) induction in green leaf tissue of corn seedlings. Nitrite, nitropropionic acid, ammonium ions, and amino acids were not effective as inhibitors of nitrate reductase activity or synthesis. Increasing α-amino nitrogen and protein content of intact corn seedlings by culture techniques significantly enhanced rather than decreased the potential for induction of nitrate reductase activity in excised seedlings.  相似文献   

3.
Experiments were conducted to determine whether the nitrate flux to the leaves or the nitrate content of the leaves regulated the nitrate reductase activity (NRA) in leaves of intact maize (Zea mays L.) seedlings having low water potentials (ψw) when other environmental and endogenous factors were constant. In seedlings that were desiccated slowly, the nitrate flux, leaf nitrate content, and NRA decreased as ψw decreased. The decrease in nitrate flux was caused by a decrease in both the rate of transpiration and the rate of nitrate delivery to the transpiration stream. Upon rewatering, the recovery in NRA was correlated with the nitrate flux but not the leaf nitrate content.  相似文献   

4.
Significant differences in NO3 accumulation and nitrate reductaseactivity (NRA) were noted in the successive segments of developingyoung primary and nodal roots. This variation was also foundto be a function of root age. Nitrite reductase activity (NiRA)on the other hand had little variation among various segmentsof primary and nodal roots and also as a function of root age.These data suggest root NO3 accumulation and root NRA are twoprocesses which are not directly linked. 1 Present address: Division of Plant Physiology, Indian AgriculturalResearch Institute, New Delhi-110012, India. (Received December 3, 1983; Accepted June 18, 1983)  相似文献   

5.
Maize (Zea mays L.) plants with two primary nodal root axeswere grown for 8 d in flowing nutrient culture with each axisindependently supplied with . Dry matter accumulation by roots was similar whether 1.0 mol m–3 was supplied to on( or both axes. When was supplied to only one axis, however, accumulationof dry matter within the root system was significantly greaterin the axis supplied with . The increased dry matter accumulation by the +N-treated axis was attributableentirely to increased density and growth of lateral branchesand not to a difference in growth of the primary axis. Proliferation of lateral branches for the + N axis was associatedwith the capacity for in situ reduction and utilization of aportion of the absorbed , especially in the apical region where lateral primordia are initiated. Althoughreduced nitrogen was translocated to the –N axis, concentrationsin the –N axis remained significantly lower than in the+N axis. The concentratio of reduced nitrogen, as well as invitro reductase activity, was greater in apical than in more basal regions of the +N axis. The enhancedproliferation of lateral branches in the + N axis was accompaniedby an increase in total respiration rate of the axis. Part ofthe increased respiration was attributable to increased massof roots. The specific respiration rate (umol CO2 exolved perhour per gram root dry weight) was also greater for the +N thanfor the –N axis. If respiration rate is taken as representativeof sink demand, stimulation of initiation and growth of lateralsby in situ utilization of a localized exogenous supply of establishes an increased sink demand through enhancedmetabolic activity and the increased partitioning of assimilatesto the + N axis responds to the difference in sink demand between+N and –N axes. Key words: NO3- reduction, NO3- uptake nitrogen partitioning, root respiration, sink demand  相似文献   

6.
Nuclei from different tissues such as stem, mesocotyl, nodalroot and root tip of diploid and tetraploid maize were isolated,stained with propidium iodide and passed through an EPICS-751flow-cytometer cell sorter. Variations in flow histograms wereobserved in different tissues. Stem tissues of both the diploidand tetraploid had two peaks representing G1 and G2 somaticnuclei. The remaining tissues in both the diploids and tetraploidsexhibited three peaks. The first peak observed in these tissuesrepresents G1 somatic nuclei of the lowest ploidy level. Thesecond peak represent G2 somatic nuclei of the lowest ploidylevel+G1 somatic nuclei of the next ploidy level. The thirdpeak represents G2 of the higher ploidy level+G1 somatic nucleiof the next higher ploidy level. Statistically significant differenceswere observed between the diploid and tetraploid maize tissueswith respect to nuclei distribution in the higher ploidy levelpeaks implying variation in the degree of endopolyploidy inthe diploid and tetraploid maize. The results of this studysuggest that the amount of endopolyploid observed in maize genotypeshas an effect on their overall agronomic performance under thefield conditions.Copyright 1993, 1999 Academic Press Zea mays L., maize, endopolyploidy, diploid, tetraploid, flow cytometry  相似文献   

7.
The effect of mechanical impedance on ethylene evolution and growth of preemergent maize (Zea mays L.) seedlings was investigated by pressurizing the growth medium in triaxial cells in a controlled environment. Pressure increased the bulk density of the medium and thus the resistance to growth. The elongation of maize primary roots and preemergent shoots was severely hindered by applied pressures as low as 10 kilopascals. Following a steep decline in elongation at low pressures, both shoots and roots responded to additional pressure in a linear manner, but shoots were more severely affected than roots at higher pressures. Radial expansion was promoted in both organs by mechanical impedance. Primary roots typically became thinner during the experimental period when grown unimpeded. In contrast, pressures as low as 25 kilopascals caused a 25% increase in root tip diameter. Shoots showed a slight enhancement of radial expansion; however, in contrast to roots, the shoots increased in diameter even when growing unimpeded. Such morphological changes were not evident until at least 3 hours after initiation of treatment. All levels of applied pressure promoted ethylene evolution as early as 1 hour after application of pressure. After 1 hour, ethylene evolution rates had increased 10, 32, 70, and 255% at 25, 50, 75, and 100 kilopascals respectively, and continued to increase linearly for at least 10 hours. When intact corn seedlings were subjected to a series of hourly cycles of pressure, followed by relaxation, ethylene production rates increased or decreased rapidly, illustrating tight coupling between mechanical impedance and tissue response. Seedlings exposed to 1 microliter of ethylene per liter showed symptoms similar to those shown by plants grown under mechanical impedance. Root diameter increased 5 times as much as the shoot diameter. Pretreatment with 10 micromolar aminoethoxyvinyl glycine plus 1 micromolar silver thiosulfate maintained ethylene production rates of impeded seedlings at basal levels and restored shoot and root extension to 84 and 90% of unimpeded values, respectively. Our results support the hypothesis that ethylene plays a pivotal role in the regulation of plant tissue response to mechanical impedance.  相似文献   

8.
Sugar Efflux from Maize (Zea mays L.) Pedicel Tissue   总被引:4,自引:5,他引:4       下载免费PDF全文
Sugar release from the pedicel tissue of maize (Zea mays L.) kernels was studied by removing the distal portion of the kernel and the lower endosperm, followed by replacement of the endosperm with an agar solute trap. Sugars were unloaded into the apoplast of the pedicel and accumulated in the agar trap while the ear remained attached to the maize plant. The kinetics of 14C-assimilate movement into treated versus intact kernels were comparable. The rate of unloading declined with time, but sugar efflux from the pedicel continued for at least 6 hours and in most experiments the unloading rates approximated those necessary to support normal kernel growth rates. The unloading process was challenged with a variety of buffers, inhibitors, and solutes in order to characterize sugar unloading from this tissue.

Unloading was not affected by apoplastic pH or a variety of metabolic inhibitors. Although p-chloromercuribenzene sulfonic acid (PCMBS), a nonpenetrating sulfhydryl group reagent, did not affect sugar unloading, it effectively inhibited extracellular acid invertase. When the pedicel cups were pretreated with PCMBS, at least 60% of sugars unloaded from the pedicel could be identified as sucrose. Unloading was inhibited up to 70% by 10 millimolar CaCl2. Unloading was stimulated by 15 millimolar ethyleneglycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid which partially reversed the inhibitory effects of Ca2+. Based on these results, we suggest that passive efflux of sucrose occurs from the maize pedicel symplast followed by extracellular hydrolysis to hexoses.

  相似文献   

9.
Maize (Zea mays L. ‘Norfolk White’) roots were treatedwith solutions of moniliformin (a metabolite of Fusarium moniliformeSheldon) at 0.0001 M and 0.001 M for 8, 24, and 48 h. Only aslight inhibition of division was noted in root tips treatedwith the lower concentration. The higher concentration causeda disruption of the spindle apparatus and consequent C-mitosis,and metaphase accumulation. (Received February 14, 1984; Accepted May 18, 1984)  相似文献   

10.
Esen A 《Plant physiology》1992,98(1):174-182
Maize (Zea mays L.) β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) was extracted from the coleoptiles of 5- to 6-day-old maize seedlings with 50 millimolar sodium acetate, pH 5.0. The pH of the extract was adjusted to 4.6, and most of the contaminating proteins were cryoprecipitated at 0°C for 24 hours. The pH 4.6 supernatant from cryoprecipitation was further fractionated by chromatography on an Accell CM column using a 4.8 to 6.8 pH gradient of 50 millimolar sodium acetate, which yielded the enzyme in two homogeneous, chromatographically different fractions. Purified enzyme was characterized with respect to subunit molecular weight, isoelectric point, amino acid composition, NH2-terminal amino acid sequence, pH and temperature optima, thermostability, and activity and stability in the presence of selected reducing agents, metal ions, and alkylating agents. The purified enzyme has an estimated subunit molecular mass of 60 kilodaltons, isoelectric point at pH 5.2, and pH and temperature optima at 5.8 and 50°C, respectively. The amino acid composition data indicate that the enzyme is rich in Glx and Asx, the sum of which approaches 25%. The sequence of the first 20 amino acids in the N-terminal region was H2N-Ser-Ala-Arg-Val-Gly-Ser-Gln-Asn-Gly-Val-Gln-Met-Leu-Ser-Pro-(Ser?) -Glu-Ile-Pro-Gln, and it shows no significant similarity to other proteins with known sequence. The enzyme is extremely stable at 0 to 4°C up to 1 year but loses activity completely at and above 55°C in 10 minutes. Likewise, the enzyme is stable in the presence of or after treatment with 500 millimolar 2-mercaptoethanol, and it is totally inactivated at 2000 millimolar 2-mercaptoethanol. Such metal ions as Hg2+ and Ag+ reversibly inhibit the enzyme at micromolar concentrations, and inhibition could be completely overcome by adding 2-mercaptoethanol at molar excess of the inhibitory metal ion. The alkylating agents iodoacetic acid and iodoacetamide irreversibly inactivate the enzyme and such inactivation is accelerated in the presence of urea.  相似文献   

11.
Establishment of maize seedlings can be difficult at low soilmoisture content. Anatomy of root metaxylem vessels may influencethe capacity for water transport and respective genotypic differencesmight be useful for selection purposes. To test this, six tropicalmaize (Zea mays L.) cultivars were grown in large PVC tubescontaining a sandy substrate at 5% (M5) and 10% (M10) moisturecontents for 2 weeks. The percentage changes in root diametersdue to M5 was similar for most cultivars but differed for mainroot types. Root diameters were not consistently related tometaxylem structure, but in a few cases, thin roots had smallerdiameter metaxylem vessels. The M5 treatment reduced the numberof late metaxylem vessels of primary roots by about 0 to 20%,while effects on nodal roots were slight. Generally, the ratioof cross-sectional areas between late and early metaxylem vesselsincreased from primary to seminal and nodal roots. Within thecultivar Tuxpefio this ratio was much reduced by M5. A few cultivarsmaintained the combined cross-sectional areas of metaxylem vesselsat M5 in some main root types, but only one cultivar could achievethis for the total of cross-sectional areas of metaxylem vessels,calculated over all root axes, by increasing the number of seminaland nodal roots. These anatomical traits seemed to be mostlyconstitutive with limited response to an actual environment,but they could be decisive for the suitability of a cultivarto an environment with frequent water shortages during seedlingestablishment. Key words: Metaxylem vessels, water stress, tropical maize  相似文献   

12.
13.
Bacterial streak disease of maize is currently causing some concern among breeders in South Africa. The causal organism of this previously undescribed disease was successfully isolated and its pathogenicity established using KoCH's postulates. Standard physiological and biochemical tests used to identify phytopathogenic bacteria indicated that the bacterium is a Xanthomonas campestris pathovar. Comparisons between this organism and other recognized X. campestris pathovars of the Poaceae indicated that apart from some minor differences the maize streak pathogen is physiologically similar to X. campestris pv. holcicola. However, in repeated reciprocal inoculation experiments all attempts to induce disease symptoms in sorghum with the maize streak pathogen were unsuccessful. Conversely, X. campestris pv. holcicola did produce symptoms in maize leaves. In all the maize cultivars tested the symptoms produced by the maize streak pathogen were, however, always considerably more severe than those caused by X. campestris pv. holcicola. Notwithstanding its physiological similarity to X. campestris pv. holicola it would appear that on the grounds of host specificity the maize streak pathogen warrants new pathovar status. The name X. campestris pv. zeae is proposed.  相似文献   

14.
Schizaphis graminum (Rondani) is proved to be an additional vector of maize mosaic virus (MMV). The pH range for the infectivity of the virus in extracted juice is found to be from 4.4 to 9.0, the optimum being 5.6 to 7.2. Effect of certain chemicals on the virusin vitro has also been studied. Cross protection between MMV and Sugar-cane mosaic virus (SMV) indicated positive results. It has been concluded on the basis of similar physical properties, tolerance towards certain chemicals, host range, symptomatology, aphid vectors and positive immunological tests, that MMV and SMV are related viruses.  相似文献   

15.
Intact and decapped primary roots of maize (Zea mays L.) were exposed to DC electric fields of 0.5 to 8.0 V/cm in low-salinity media to resolve conflicting results about the direction of electrotropism. In DC fields of 0.5 V/cm or 1.0 V/cm, intact roots always curved toward the cathode. In a field of 8.0 V/cm, intact roots curved toward the anode and stopped growth. Decapped roots also curved toward the anode both in weak and strong fields. The results indicate that growth toward the cathode is the true response of healthy roots.  相似文献   

16.
We investigated the change of root net proton excretion of seedlings of Triticum aestivum L. and Zea mays L. with daily variation of illumination using a multi-channel pH-stat system. We found an increase of net proton excretion during darkness and a drop after the beginning of illumination. Inhibition of carotenoid biosynthesis by norflurazone and photooxidation of chlorophylls did not change the periodicity or its induction. The induction of diurnal periodicity was possible with blue, green and red light. After induction the oscillation of net proton excretion continued for at least two cycles under constant light. We conclude that net H+ excretion of wheat and maize roots may be regulated by an endogenous clock or by a signal from the leaves. The nature of such a hypothetical signal remains unknown.  相似文献   

17.
FAIR  P. 《Annals of botany》1978,42(1):101-107
Varying levels of nitrogen supplied as either nitrate or theammonium ion were shown to significantly affect the number ofperoxisomal profiles per cell section in both barley and thebundle sheath cells of maize. The enzyme activities of nitratereductase and catalase are also shown to be correlated withthe number of peroxisomal profiles. The implications of theserelationships are discussed.  相似文献   

18.
Li XZ  Oaks A 《Plant physiology》1994,106(3):1145-1149
Both light and NO3- are necessary for the appearance of nitrate reductase (NR) activity (NRA) in photosynthetic tissues. To define the light effect more precisely, we examined the response to light/dark transitions on NRA, NR protein (NRP), and NR mRNA in 6-d-old maize (Zea mays cv W64A x W182E) seedlings that had been grown in a light/dark regime for 5 d and then induced with 5 mM KNO3 for 24 h. The decay of NRA and NR mRNA in the shoot was immediate, but there were only minor changes in NRP during the initial 4 h in the dark. In root tissues, in contrast, there was a 4-h delay in the loss of NRA, NRP, and NR mRNA after transfer to the dark. When the seedlings were returned to light after a 2-h interval in the dark, shoot NRA reached 92% of the initial levels within 30 min of illumination. These results indicate that in the shoots (a) NR message production requires light and (b) the NRP that appears with light treatment and that is active is inactivated in the dark. The NRP can be reactivated when the light is turned on after short periods of darkness (2 h). Root tissues, on the other hand, probably respond to the supply of photosynthetically produced metabolites rather than to immediate products of the light reactions of photosynthesis.  相似文献   

19.
The Growth and Development of Maize (Zea mays L.) at Five Temperatures   总被引:1,自引:0,他引:1  
The objectives of this work were to measure growth and developmentrates over a range of temperatures and to identify processeswhich may limit vegetative yield of maize (Zea mays L.). Twosingle cross Corn Belt Dent maize hybrids were grown from sowingin a diurnal temperature regime of 16/6 °C day/night andin constant temperature environments of 16, 20, 24 and 28 °C.The 16/6 °C environment was close to the minimum for sustainedgrowth and 28 °C was near the optimum. Entire plants wereharvested at stages with 4, 6, 7 and 8 mature leaves in alltemperature treatments except 20 °C in which the final twoharvests were carried out at 9 and 10 mature leaves. Mean totalleaf number varied between 19.5 and 16.0 with the maximum occurringat 16/6 °C. Although harvests were carried out at comparableleaf numbers, and hence at similar developmental stages, thetime interval between sowing and harvest decreased considerablyas temperatures increased. The relative rates of dry weight and leaf area accumulationwith time increased with a Q10 of 2.4 between 16 and 28 °C,while leaf appearance rate increased with a Q10 of 2.9 overthe same range; both rates were highest at 28 °C. Althoughdry matter partitioning to the shoots increased with temperature,the area of individual leaves varied in a systematic patternwhich resulted in maximum leaf area, leaf area duration andconsequently dry weight being realized at 20 °C for anygiven stage of development. Zea mays, corn, low temperature stress, temperature response, growth, development  相似文献   

20.
L-Proline is oxidized to pyrroline-5-carboxylic acid in intact plant mitochondria by a proline dehydrogenase (EC 1.4.3) that is bound to the matrix side of the inner mitochondrial membrane (TE Elthon, CR Stewart [1981] Plant Physiol 67: 780-784). This investigation reports the first solubilization of the L-proline dehydrogenase (PDH) from plant mitochondria. The supernatant from NP-40-treated etiolated shoot mitochondria of maize, Zea mays L., reduced iodonitrotetrazolium violet in a proline dependent manner. The pH optimum for this activity was 8. The apparent Km for proline was 6.6 millimolar. When supplied with proline, this solubilized PDH activity also synthesized pyrroline-5-carboxylic acid. The PDH activity was inhibited in vitro by 300 millimolar potassium chloride but not by 300 millimolar potassium acetate. The PDH activity had a molecular mass that was greater than 150 kilodaltons. Mitochondria were prepared from etiolated shoots grown in 100% water-saturated vermiculite (control) and 16% water-saturated vermiculite (stress). The specific activity of solubilized PDH from the stress treatment was 11% of the same activity from the control treatment. Oxygen uptake in the presence of proline and ADP (state 3 proline oxidation) by mitochondria from the stress treatment was 25% of the same rate by mitochondria from the control treatment. Mitochondria were also prepared 16 hours after rewatering the seedlings growing in the stress treatment. Both the solubilized PDH specific activity and state 3 proline oxidation returned to the control levels. The specific activities of the NAD+-dependent pyrroline-5-carboxylic acid dehydrogenase and cytochrome c oxidase in the solubilized preparations were unaffected by these stress and recovery treatments. Oxygen uptake rates by intact mitochondria in the presence of ADP and NADH, succinate or malate-pyruvate were also unaffected by these treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号