首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seasonal variations in invertebrate assemblages at two sites (upstream and downstream) on six central Florida headwater streams were compared by sampling at quarterly intervals with core and dip net samplers. Two of the streams were reclaimed following phosphate mining (~6 yr prior to this study), two received runoff from mined lands, and two were disturbed by agriculture and/or residential developments. Physical and chemical characteristics of the reclaimed streams differed markedly from those of the non-reclaimed streams; principal differences between the streams were in current velocity, percent organic matter (POM), Mn, conductivity and alkalinity. Annual mean densities of meiofauna and smaller macrofauna for the 12 stream sites ranged from 20?896 to 175?212 m?2 and the mean for all sites was 56?492 m?2. The reclaimed streams and one of the streams influenced by agriculture had annual means of less than 40?000 m?2, 3- to 5-fold lower than the other streams. Fall and winter core densities were ~2.4-fold greater than those for spring or summer when drought and low dissolved oxygen prevailed. Meiofauna comprised 68–91% of the core sample invertebrates in reclaimed streams but only 43–62% in the non-reclaimed streams; principal functional groups were: gathering collectors – 61.5%, predators – 19.3% and filtering collectors – 15%. The taxonomic composition of the reclaimed streams was predominated by crustaceans (60–71%) while chironomids and annelids were more abundant (71–92%) in the non-reclaimed streams. Dip net sampling added 21 larger macrofauna species (Odonata, Hemiptera and Coleoptera) to our list of taxa, producing a total of 209 species. Species richness and diversity (H′ and N 2) indices were lower in the reclaimed streams, but evenness was more variable. The Czekanowski–Dice–Sørensen similarity index showed that the reclaimed stream sites were quite similar to each other, but differed markedly from the other stream types; there was large variation both within and between seasons. For central Florida headwater streams, drought appears to have a larger influence on invertebrates than the type of land use, however this relationship should be confirmed using streams of similar hydrology.  相似文献   

2.
Summary

Selected limnological attributes of the Okavango Delta panhandle were measured during a brief summer survey of “open-water” habitats extending from the permanent mainstream channel, through contiguous off-channel lagoons and still backwaters, to seasonally isolated floodplain lagoon and temporary pool biotopes on the left-bank of the Okavango River at Seronga.

Wide ranges in most determinants were evident along this profile:- temperature (27–34°C); conductivity(4–12.7mS m?1); pH(5.7–9.2); transparency(0.2–>2.5 m Secchi depth); dissolved oxygen (20–220% saturation); PO4-P (61–110 μg ??1): SiO2—Si (6.9–14.0 mg ??1): NH4-N (30–44 μg ??1): chlorophyll (1.3–183 μ.g ??1). Zooplankton was variably diverse (species richness from ≥ 3 to 20), comprising both euplanktonic (Bosmina, Ceriodaphnia, Daphnia, Diaphanosoma, Moina, Mesocyclops, Thermocyclops, Tropodiaptomus) and more typical epiphytic crustacean taxa (Alona, Macrothrix, Pleuroxus), along with various rotifers (Brachionus, Hexarthra, Keratella, Trichocera) and other taxa (Arcella, Ostracoda. Chaoborus). Abundance varied widely between habitats. The littoral macrozoobenthos showed surprisingly low diversity, and was dominated by freshwater shrimps (Caridina).

Substantial allochthonous inputs to the Okavango swamps were evident from the significant concentrations of total suspended solids (7.6–12.6 mg ??1 , organic content of 33–41%) carried by the mainstream Okavango River during the survey.  相似文献   

3.
SUMMARY.
  • 1 Production of chironomid communities of three first order, Appalachian Mountain streams was estimated and the effects of an insecticide-induced disturbance on chironomid production was examined.
  • 2 Annual production of non-Tanypodinae chironomids in the streams during the first study year (no treatment) ranged from 1366 to 3636 mg m?2, while production of Tanypodinae chironomids ranged from 48 to 116 mg m ?2. Production/biomass ratios ranged between 19 and 23 for non-Tanypodinae and from 6 to 7 for Tanypodinae chironomids.
  • 3 Insecticide applications resulted in significantly lower chironomid densities and biomass in the treated stream relative to the pretreatment year and reference stream. Annual production of non-Tanypodinae (703 mg m?2) and Tanypodinae (32 mg m ?2) chironomids in the treated stream decreased by 64% and 67%, respectively, compared with the pretreatment year. In contrast, production of non-Tanypodinae (2084 mg m?2) increased by 34% and production of Tanypodinae (96 mg m?2) by 57% in the reference stream.
  相似文献   

4.
1. To gain a better understanding of the heterotrophic nature of small headwater streams in forested landscapes we explored the spatial and temporal variability of in‐stream organic matter processes. Three methods were used to measure the benthic metabolism of different in‐stream habitats in seven streams throughout a calendar year. This allowed us to analyse the contribution of various metabolic habitats (i.e. sediment, leaf litter, cobbles) to in‐stream metabolism during a natural flow regime. Furthermore, it allowed us to define in‐stream patchiness based on functional rather than structural elements. 2. Bacterial growth, measured using a leucine assay, displayed a quadratic relationship over time with a peak in warmer months and consistently higher bacterial growth in fine depositional (3.00–710.64 mg C m?2 day?1) than coarse gravel (38.84–582.85 mg C m?2 day?1) sediments. 3. Community metabolism, measured using dissolved oxygen chambers, showed distinct diel patterns and consistently greater net daily metabolism in leaf packs (?261.76 to ?24.50 mg C m?2 day?1) than fine depositional sediments (?155.00 to ?15.56 mg C m?2 day?1). Coarse gravel sediments (?49.55 to ?16.88 mg C m?2 day?1) and cobble habitats (?151.98 to 55.38 mg C m?2 day?1) exhibited the lowest metabolic rates. Modelled whole‐stream metabolism was highly variable among streams and temporal patterns appeared driven by temperature and the relative contribution of patch configuration as a function of flow. 4. Cellulose decomposition potential showed higher rates of microbial activity in fine depositional compared to coarse gravel sediments (30.5 and 29.1 kg average cotton tensile strength loss respectively), though there were higher rates of thread loss indicative of macroinvertebrate activity in gravel compared to depositional sediment (21% and 13% average thread loss respectively), with a slight quadratic trend. The high variability among habitats, streams and over time in this integrative measure may be explained by variability in local microbial activity as well as the potential for macroinvertebrates to contribute across patches. 5. There were strong relationships among benthic processes and habitat structure, nutrient status, stream temperature and flow. Different habitats had distinct metabolic characteristics and these characteristics appear to influence stream food webs and biogeochemical cycling depending on the relative abundance of habitats. Generally, within habitat variability was less than among habitat variability and among stream variability was less than temporal variability. Hence, in terms of the spatial and temporal heterogeneity of benthic processes, these small headwater streams showed predictable metabolic patterns. However, there were few correlations between differing measures of benthic metabolism at the same patch and this suggests that caution should be taken when attempting to infer the rates of one level of metabolic activity (e.g. whole community metabolism) based on another (e.g. bacterial productivity).  相似文献   

5.
1. The light : nutrient hypothesis (LNH) states that algal nutrient content is determined by the balance of light and dissolved nutrients available to algae during growth. Light and phosphorus gradients in both laboratory and natural streams were used to examine the relevance of the LNH to stream periphyton. Controlled gradients of light (12–426 μmol photons m?2 s?1) and dissolved reactive phosphorus (DRP, 3–344 μg L?1) were applied experimentally to large flow‐through laboratory streams, and natural variability in canopy cover and discharge from a wastewater treatment facility created gradients of light (0.4–35 mol photons m?2 day?1) and DRP (10–1766 μg L?1) in a natural stream. 2. Periphyton phosphorus content was strongly influenced by the light and DRP gradients, ranging from 1.8 to 10.7 μg mg AFDM?1 in the laboratory streams and from 2.3 to 36.9 μg mg AFDM?1 in the natural stream. Phosphorus content decreased with increasing light and increased with increasing water column phosphorus. The simultaneous effects of light and phosphorus were consistent with the LNH that the balance between light and nutrients determines algal nutrient content. 3. In experiments in the laboratory streams, periphyton phosphorus increased hyperbolically with increasing DRP. Uptake then began levelling off around 50 μg L?1. 4. The relationship between periphyton phosphorus and the light : phosphorus ratio was highly nonlinear in both the laboratory and natural streams, with phosphorus content declining sharply with initial increases in the light : phosphorus ratio, then leveling off at higher values of the ratio. 5. Although light and DRP both affected periphyton phosphorus content, the effects of DRP were much stronger than those of light in both the laboratory and natural streams. DRP explained substantially more of the overall variability in periphyton phosphorus than did light, and light effects were evident only at lower phosphorus concentrations (≤25 μg L?1) in the laboratory streams. These results suggest that light has a significant negative effect on the food quality of grazers in streams only under a limited set of conditions.  相似文献   

6.
SUMMARY. 1. Total seston, and invertebrate drift were studied before and after lime addition to Fyllean River, a stream-iake system in Halland county, southwest Sweden, with poorly buffered waters undergoing acidification. 2. The largest effect of liming was on the chemistry of the water. Following liming with 23 mg CaCO3 l?1 the pH of the water changed from 5.8 to 6.8 and alkalinity from 0.04 to 0.13 meq l?1.Turbidity increased from 3.4 to 4.7 JTU with no change in colour. 3. Dissolved organic carbon (DOC) concentration of all samples was in the range 10.7–13.3 mg C l?1 with no significant change occurring due to liming. 4. Total seston increased from 4.35 mg DM 1?1 in unlimed conditions to 6.25 mg DM l?1 after lime addition. All significant changes in seston occurred in the smaller size fraction (0.45–25 μm). 5. Liming reduced the organic content of the partieulate material from an average of 61% to 39% immediately downstream of a lime silo (within 1 km) but had little effect when the river course was interrupted by lakes and impoundments. 6. The lakes in the river system had a larger effect on seston concentration than any effect of the lime addition by itself. Particle concentrations were reduced by 50–55% and DOC by about 1 mg C l?1as the water passed through the lakes. 7. Macroinvertebrate drift density was low in all samples before and after liming and typical of oligotrophic streams. Drift was significantly lower at limed (0.024 ind. m?3) than at unlimed (0.083 ind. m?3) locations. The decrease was only in total drift density with no significant change in the relative abundance of functional groups or in densities of single taxa, except for a reduction in drift of predators in the limed condition.  相似文献   

7.
Evasion of gaseous carbon (C) from streams is often poorly quantified in landscape C budgets. Even though the potential importance of the capillary network of streams as C conduits across the land–water–atmosphere interfaces is sometimes mentioned, low‐order streams are often left out of budget estimates due to being poorly characterized in terms of gas exchange and even areal surface coverage. We show that evasion of C is greater than all the total dissolved C (both organic and inorganic) exported downstream in the waters of a boreal landscape. In this study evasion of carbon dioxide (CO2) from running waters within a 67 km2 boreal catchment was studied. During a 4 year period (2006–2009) 13 streams were sampled on 104 different occasions for dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). From a locally determined model of gas exchange properties, we estimated the daily CO2 evasion with a high‐resolution (5 × 5 m) grid‐based stream evasion model comprising the entire ~100 km stream network. Despite the low areal coverage of stream surface, the evasion of CO2 from the stream network constituted 53% (5.0 (±1.8) g C m?2 yr?1) of the entire stream C flux (9.6 (±2.4) g C m?2 yr?1) (lateral as DIC, DOC, and vertical as CO2). In addition, 72% of the total CO2 loss took place already in the first‐ and second‐order streams. This study demonstrates the importance of including CO2 evasion from low‐order boreal streams into landscape C budgets as it more than doubled the magnitude of the aquatic conduit for C from this landscape. Neglecting this term will consequently result in an overestimation of the terrestrial C sink strength in the boreal landscape.  相似文献   

8.
Organic acids and inorganic chemistry were examined in seventeen seepage lakes, seven streams, and one seep in central Maine. The objectives of this analysis were to determine the quantity and quality of dissolved organic carbon (DOC), and to assess the relationship between organic and inorganic surface water chemistry. Lakes and streams sampled were dilute (average conductivity of 20.3 μS cm?1) with a wide range of DOC (125–2593 μmol C L?1). Organic acids in DOC were evaluated by:
  • DOC fractionation (hydrophobic acids and neutrals, and hydrophilic acids, bases, and neutrals);
  • DOC isolation followed by FT-IR, base titration, and chemical analyses;
  • adsorption on solid phase extraction columns; and charge balance studies.
  • All lakes and streams were dominated by hydrophobic and hydrophilic acids (60 to 92% of DOC). Lakes and streams with low DOC had low hydrophobic to hydrophilic acid ratios (ca 1.2–1.3), regardless of pH and acid neutralizing capacities (ANC), compared to lakes and streams with moderate to high DOC concentrations (ca 1.9–2.4). Based on FT-IR spectroscopy and chemical analysis, organic acids were found to be dominated by a strong carboxylic character. Titration data of isolated DOC allowed accurate prediction of organic anions, which were strongly pH dependent (organic anions ranged from 14 to 198 μeq L?1). Exchange acidity averaged 11.3, 13.6, and 8.7 μeq mg C?1 for lake hydrophobic acids, lake hydrophilic acids, and stream hydrophobic acids, respectively. Overall evidence suggested that DOC and organic acid characteristics were related to their carboxylic functional group content and that the nature of these constituents was similar despite the source of origin (upland soils, wetlands, or Sphagnum deposits). Also, contact of soil leachates with B horizons seemed to be a controlling factor in DOC quantity and quality in the lakes and streams studied.  相似文献   

    9.
    We measured CO2 concentration and determined evasion rate and piston velocity across the water–air interface in flow-through chambers at eight stations along two 20 km long streams in agricultural landscapes in Zealand, Denmark. Both streams were 9–18-fold supersaturated in CO2 with daily means of 240 and 340 μM in January–March and 130 and 180 μM in June–August. Annual CO2 medians were 212 μM in six other streams and 460 μM in four groundwater wells, while seven lakes were weakly supersaturated (29 μM). Air concentrations immediately above stream surfaces were close to mean atmospheric conditions except during calm summer nights. Piston velocity from 0.4 to 21.6 cm h?1 was closely related to current velocity permitting calculation of evasion rates for entire streams. CO2 evasion rates were highest in midstream reaches (170–1,200 mmol m?2 day?1) where CO2-rich soil water entered fast stream flow, while rates were tenfold lower (25–100 mmol m?2 day?1) in slow-flowing lower reaches. CO2 evasion mainly derived from the input of CO2 in soil water. The variability of CO2 evasion along the two lowland streams covered much of the range in sub-Arctic and temperate streams reported previously. In budgets for the two stream catchments, loss of carbon from soils via the hydrological cycle was substantial (3.2–5.7 mmol m?2 day?1) and dominated by CO2 consumed to form HCO3 ? by mineral dissolution (69–76%) and export of organic carbon (15–23%) relative to dissolved CO2 export (7–9%).  相似文献   

    10.
    1. We investigated the roles of grass litter in streams that drain upland New Zealand tussock grassland, paying particular attention to the ways in which grass leaves differed in their characteristics from much more intensively studied tree leaves. 2. The instantaneous retention rates of tussock grass leaves (Chionochloa rigida) on the bed of a second-order stream (0.157–0.515 m?1) were significantly higher than those of the elliptical leaves of lemonwood trees (Pittosporum eugenioides; 0.068–0.180 m?1). 3. Instantaneous retention rates of grass leaves in two third-order streams were very low. At high discharge, leaf retention rate was greater in Timber Creek (0.0040 m?1), a braided, gravel bed stream, than in the adjacent Kye Burn (0.0010m?1), with its well-defined channel and large, stable substrate particles. At baseflow, retention rates were similar in the two streams (0.0053–0.0064 m?1 for Timber Creek; 0.0047–0.0058m?1 for Kye Burn). Nevertheless, total coarse particulate organic matter (mainly derived from tussock litter) was present at lower densities in Timber Creek than Kye Bum, reflecting the instability of the bed of the former and its tendency to spread over a wide area at high discharge. 4. The results of a colonization tray experiment, in which substrate was mixed with tussock leaves, nylon ribbon or nothing, indicate that tussock leaves do not play an important role as microhabitat or food in the two third-order streams. This may reflect the poor food quality of grass litter, and/or the relatively low availability and predictability of its supply. 5. An in situ experiment revealed that tussock leaves play a role, analogous to that reported for certain seagrasses, in stabilizing substrate and reducing sediment transport, apparently by reducing bed roughness and therefore the force of friction on the bed.  相似文献   

    11.
    1. We compared fungal biomass, production and microbial respiration associated with decomposing leaves in one softwater stream (Payne Creek) and one hardwater stream (Lindsey Spring Branch). 2. Both streams received similar annual leaf litter fall (478–492 g m?2), but Lindsey Spring Branch had higher average monthly standing crop of leaf litter (69 ± 24 g m?2; mean ± SE) than Payne Creek (39 ± 9 g m?2). 3. Leaves sampled from Lindsey Spring Branch contained a higher mean concentration of fungal biomass (71 ± 11 mg g?1) than those from Payne Creek (54 ± 8 mg g?1). Maximum spore concentrations in the water of Lindsay Spring Branch were also higher than those in Payne Creek. These results agreed with litterbag studies of red maple (Acer rubrum) leaves, which decomposed faster (decay rate of 0.014 versus 0.004 day?1), exhibited higher maximum fungal biomass and had higher rates of fungal sporulation in Lindsey Spring Branch than in Payne Creek. 4. Rates of fungal production and respiration per g leaf were similar in the two streams, although rates of fungal production and respiration per square metre were higher in Lindsey Spring Branch than in Payne Creek because of the differences in leaf litter standing crop. 5. Annual fungal production was 16 ± 6 g m?2 (mean ± 95% CI) in Payne Creek and 46 ± 25 g m?2 in Lindsey Spring Branch. Measurements were taken through the autumn of 2 years to obtain an indication of inter‐year variability. Fungal production during October to January of the 2 years varied between 3 and 6 g m?2 in Payne Creek and 7–27 g m?2 in Lindsey Spring Branch. 6. Partial organic matter budgets constructed for both streams indicated that 3 ± 1% of leaf litter fall went into fungal production and 7 ± 2% was lost as respiration in Payne Creek. In Lindsey Spring Branch, fungal production accounted for 10 ± 5% of leaf litter fall and microbial respiration for 13 ± 9%.  相似文献   

    12.
    Biogeochemical processes in the groundwater discharge zone of urban streams   总被引:1,自引:0,他引:1  
    The influence of biogeochemical processes on nitrogen and organic matter transformation and transport was investigated for two urban streams receiving groundwater discharge during the dry summer baseflow period. A multiple lines of evidence approach involving catchment-, and stream reach-scale investigations were undertaken to describe the factors that influence pore water biogeochemical processes. At the catchment-scale gaining stream reaches were identified from water table mapping and groundwater discharge estimated to be between 0.1 and 0.8 m3 m?2 d?1 from baseflow analysis. Sediment temperature profiles also suggested that the high groundwater discharge limited stream water infiltration into the sediments. At the stream reach-scale, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations were higher in stream water than in groundwater. However, DOC and DON concentrations were greatest in sediment pore water. This suggests that biodegradation of sediment organic matter contributes dissolved organic matter (DOM) to the streams along with that delivered with groundwater flow. Pore water ammonium (NH4 +) was closely associated with areas of high pore water DOM concentrations and evidence of sulfate (SO4 2?) reduction (low concentration and SO4:Cl ratio). This indicates that anoxic DOM mineralization was occurring associated with SO4 2? reduction. However the distribution of anoxic mineralization was limited to the center of the streambed, and was not constrained by the distribution of sediment organic matter which was higher along the banks. Lower sediment temperatures measured along the banks compared to the center suggests, at least qualitatively, that groundwater discharge is higher along the banks. Based on this evidence anoxic mineralization is influenced by groundwater residence time, and is only measurable along the center of the stream where groundwater flux rates are lower. This study therefore shows that the distribution of biogeochemical processes in stream sediments, such as anoxic mineralization, is strongly influenced by both the biogeochemical conditions and pore water residence time.  相似文献   

    13.
    1. Low organic matter availability is thought to be a primary factor influencing evolutionary and ecological processes in cave ecosystems. We examined links among organic matter abundance, macroinvertebrate community structure and breakdown rates of red maple (Acer rubrum) and corn litter (Zea mays) in coarse‐ (10 × 8 mm) and fine‐mesh (500‐μm) litter bags over two seasonal periods in four cave streams in the south‐eastern U.S.A. 2. Organic matter abundance differed among cave streams, averaging from near zero to 850 g ash‐free dry mass m?2. Each cave system harboured a different macroinvertebrate community. However, trophic structure was similar among caves, with low shredder biomass (2–17% of total biomass). 3. Corn litter breakdown rates (mean k = 0.005 day?1) were faster than red maple (mean k = 0.003 day?1). Breakdown rates in coarse‐mesh bags (k = 0.001–0.012 day?1) were up to three times faster than in fine‐mesh bags (k = 0.001–0.004 day?1). Neither invertebrate biomass in litter bags nor breakdown rates were correlated with the ambient abundance of organic matter. Litter breakdown rates showed no significant temporal variation. Epigean (surface‐adapted) invertebrates dominated biomass in litter bags, suggesting that their effects on cave ecosystem processes may be greater than hypogean (cave‐adapted) taxa, the traditional focus of cave studies. 4. The functional diversity of our cave communities and litter breakdown rates are comparable to those found in previous litter breakdown studies in cave streams, suggesting that the factors that control organic matter processing (e.g. trophic structure of communities) may be broadly similar across geographically diverse areas.  相似文献   

    14.
    Nitrogen dynamics in two antarctic streams   总被引:1,自引:1,他引:0  
    The many glacier meltwater streams of southern Victoria Land flow through catchments where life forms are almost entirely microbial. Allochthonous inputs of nitrogen from two study streams near McMurdo Sound were derived mostly from the melting glaciers (ca. 100–200 mg N m–3) with some originating from N2-fixation by heterocystous cyanobacteria (max. 939 mg N m–2 year–1). Thirty to fifty per cent of the glacier derived N was dissolved organic N and a major proportion of this was identified as urea N which was utilised by the rich algal and cyanobacterial mats in the streams. A nutrient budget for Fryxell Stream was estimated, quantifying uptake of urea-N and dissolved inorganic N and the release of dissolved organic (non urea) and particulate N by the stream communities. An index of in-stream nitrogen processing, the Net Uptake Length Constant in these streams was compared with that from temperate climates and was found to be similar. Despite the influence of low temperatures on microbial activity (mean daily water temperature = 5 °C) nutrient removal rates from these antarctic streams are high because of the large standing stock of microbial biomass there.  相似文献   

    15.
    We investigated the depositional trends of total particles, carbon and nitrogen in a newly created, 600-km2 hydroelectric reservoir in Northern Québec, and compared the results with those observed in lakes of the surrounding region. We show that particulate fluxes exhibit a large degree of spatial heterogeneity in both the reservoir (68–548 mg POC m?2 d?1 and 5–33 mg PN m?2 d?1) and the natural lakes (30–150 mg POC m?2 d?1 and 3–12 mg PN m?2 d?1) and that on average, settling fluxes of the reservoir (211 ± 46 mg POC m?2 d?1 and 14 ± 3 mg PN m?2 d?1) exceeded lake deposition (79 ± 13 mg POC m?2 d?1 and 7 ± 1 mg PN m?2 d?1) by approximately two-fold. Our results also show that the nature of the organic matter reaching the sediments was significantly different between lakes and the reservoir, which can have consequences for benthic metabolism and the long-term storage. We found that sinking fluxes in the reservoir were mostly regulated by local morphological and hydrological conditions, with higher fluxes along or in the vicinity of the old riverbed (average 400 ± 73 mg POC m?2 d?1 and 24 ± 5 mg PN m?2 d?1) and lower fluxes in calmer zones such as side bays (average 106 ± 10 mg POC m?2 d?1 and 8 ± 1 mg PN m?2 d?1). In lakes, where settling fluxes were not linked to the trophy, or dissolved organic carbon, the actual nature of the sedimenting organic material was influenced by lake morphometry and the relative contribution of algal versus terrestrial sources. We conclude that re-suspension and erosion play a major role in shaping the reservoir sinking fluxes which explain both, the higher reservoir deposition and also some of the qualitative differences between the two systems. Despite all these differences, sinking particulate organic carbon fluxes were small and surprisingly similar relative to the surface carbon dioxide emissions in both the reservoir and lakes, representing approximately 16–17 % of the carbon efflux estimated for these same systems in 2008.  相似文献   

    16.
    We investigated the influence of red alder (Alnus rubra) stand density in upland, riparian forests on invertebrate and detritus transport from fishless headwater streams to downstream, salmonid habitats in southeastern Alaska. Red alder commonly regenerates after soil disturbance (such as from natural landsliding or timber harvesting), and is common along streams in varying densities, but its effect on food delivery from headwater channels to downstream salmonid habitats is not clear. Fluvial transport of invertebrates and detritus was measured at 13 sites in spring, summer and fall during two years (2000–2001). The 13 streams encompassed a riparian red alder density gradient (1–82% canopy cover or 0–53% basal area) growing amongst young-growth conifer (45-yr-old stands that regenerated after forest clearcutting). Sites with more riparian red alder exported significantly more invertebrates than did sites with little alder (mean range across 1–82% alder gradient was about 1–4 invertebrates m?3 water, and 0.1–1 mg invertebrates m?3 water, respectively). Three-quarters of the invertebrates were of aquatic origin; the remainder was of terrestrial origin. Aquatic taxa were positively related to the alder density gradient, while terrestrially-derived taxa were not. Streams with more riparian alder also exported significantly more detritus than streams with less alder (mean range across 1–82% alder gradient was 0.01–0.06 g detritus m?3 water). Based on these data, we predict that headwater streams with more riparian alder will provide more invertebrates and support more downstream fish biomass than those basins with little or no riparian alder, provided these downstream food webs fully utilize this resource subsidy.  相似文献   

    17.

    Objectives

    Power production characteristics and substrate concentration dependence of voltage have been investigated together with the determination of kinetic constants in two-chambered mediator-less microbial fuel cells (MFC) for acetate and peptone substrates.

    Results

    At 500 mg DOC l?1 (dissolved organic carbon), power densities normalized to the anode surface of 112 mW m?2 with acetate and 114 mW m?2 with peptone as electron donor were attained by applying cathodes with a Pt catalyst layer. Related anode surface specific substrate removal rate was 44 g DOC m?2 h?1 for acetate and 52 g DOC m?2 h?1 for peptone. Substrate concentration dependency of the voltage suggests Monod-like kinetics with extremely low, <1 mg DOC l?1, half saturation constants and with final DOC concentrations of 6–10 mg l?1.

    Conclusions

    Acetate and peptone are equivalent substrates for the exoelectrogenic bacteria both from the point of view of biodegradation kinetics and power production characteristics.
      相似文献   

    18.
    China's marginal seas extend from temperate, subtropical to tropical zones, which encounter different monsoons. This study investigates the monthly variation of phytoplankton pigment concentrations (PC) from 1978 to 1986, and analyzes seasonal winds with sea surface temperatures (SST) among the Bohai Sea, the Yellow Sea, the East China Sea and the northern South China Sea. Nimbus satellite Coastal Zone Color Scanner (CZCS)-derived PC images were averaged into monthly fields for the entire area; we then emphasize the period of one year from November 1979 to October 1980, when CZCS data availability was relatively good. Monthly variability of PC has been compared among three regions (the outlets of the Yellow River, the Yangtze River and the Pearl River). The results revealed well-defined seasonality of PC, wind and SST from north to south in China's marginal seas. In the northern area (Bohai Sea and Yellow Sea), variability in SST (0–28?°C) and PC (0.5–3.5 mg m?3) was high with two peaks of PC appeared in spring–summer and in fall–winter in each year. In the East China Sea, two peaks of PC (1.2 mg m?3 in March and 1.3 mg m?3 in November) were in evidence, where SST variations were ranged 7–28?°C in one year. However, in the southern area (northern South China Sea), variation in SST (15–29?°C) and PC (0.1–0.4 mg m?3) was relatively low; the monthly variation of PC was not so high compared with north area. OCTS derived ocean color data obtained from April 1997 conformed the spatial pattern of Chl-a and colored dissolved organic matter (CDOM), and showed high CDOM and total suspended material (TSS) in the coast waters in the north part of China's marginal seas. Seasonal variation of PC may be related to the reversed monsoon; and spatial variation of PC may be influenced by river discharge, upwelling and coastal currents. High PC areas match good fishing grounds in terms of season and location in the study waters.  相似文献   

    19.
    The amounts, sources and relative ages of inorganic and organic carbon pools were assessed in eight headwater streams draining watersheds dominated by either forest, pasture, cropland or urban development in the lower Chesapeake Bay region (Virginia, USA). Streams were sampled at baseflow conditions six different times over 1 year. The sources and ages of the carbon pools were characterized by isotopic (δ13C and ?14C) analyses and excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). The findings from this study showed that human land use may alter aquatic carbon cycling in three primary ways. First, human land use affects the sources and ages of DIC by controlling different rates of weathering and erosion. Relative to dissolved inorganic carbon (DIC) in forested streams which originated primarily from respiration of young, 14C-enriched organic matter (OM; δ13C = ?22.2 ± 3 ‰; ?14C = 69 ± 14 ‰), DIC in urbanized streams was influenced more by sedimentary carbonate weathering (δ13C = ?12.4 ± 1 ‰; ?14C = ?270 ± 37 ‰) and one of pasture streams showed a greater influence from young soil carbonates (δ13C = ?5.7 ± 2.5 ‰; ?14C = 69 ‰). Second, human land use alters the proportions of terrestrial versus autochthonous/microbial sources of stream water OM. Fluorescence properties of dissolved OM (DOM) and the C:N of particulate OM (POM) suggested that streams draining human-altered watersheds contained greater relative contributions of DOM and POM from autochthonous/microbial sources than forested streams. Third, human land uses can mobilize geologically aged inorganic carbon and enable its participation in contemporary carbon cycling. Aged DOM (?14C = ?248 to ?202 ‰, equivalent14C ages of 1,811–2,284 years BP) and POM (?14C = ?90 to ?88 ‰, 14C ages of 669–887 years BP) were observed exclusively in urbanized streams, presumably a result of autotrophic fixation of aged DIC (?297 to ?244 ‰, 14C age = 2,251–2,833 years BP) from sedimentary shell dissolution and perhaps also watershed export of fossil fuel carbon. This study demonstrates that human land use may have significant impacts on the amounts, sources, ages and cycling of carbon in headwater streams and their associated watersheds.  相似文献   

    20.
    1. Density, biomass, production and growth of a predaceous stonefly, Acroneuria lycorias, were compared between fourth-order hard- and soft-water streams in Michigan's upper peninsula, U.S.A. 2. Mean densities, estimated from Hess samples, were higher (100 ± 17 individuals m?2) at the hard-water site than at the soft-water site (40 ± 9 ind. m?2). Mean dry weight biomass was 4.9 times greater at the hard-water site. 3. Mean annual production, calculated using the size frequency method, was 5.0 times greater at the hard-water site (2.18 ± 0.44 g dry weight m?2yr?1) than at the soft-water site (0.43 ± 0.02g dry weight m?2yr?1). Annual production/mean biomass ratios were similar between sites. 4. Monthly growth rates of naturally occurring nymphs of paired cohorts were similar in both streams. Individual growth rates were similar for nymphs reared in artificial streams at high and low water hardnesses with unlimited food and space. 5. Stonefly production and growth rates were influenced more by indirect physical, biological, or habitat factors than by streamwater cation concentrations.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号