首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hairy attachment devices that are not supplemented with fluid secretion have evolved independently in lizards and spiders. van der Waals forces have previously been shown to be responsible for excellent adhesive properties of these structures, but it has recently been reported that wetting phenomena also play an important role in such 'dry adhesives'. To investigate the effect of ambient humidity on the attachment of the living spider Philodromus dispar, traction force was measured on a smooth epoxy resin surface at relative humidities (RHs) of 15, 50, 70, 80 and 99 per cent. The results show that attachment ability is significantly higher at an intermediate humidity compared with that in a dry atmosphere and at high humidity. Water condensation on the substrate surface almost completely abolishes adhesion. Experimental results obtained may be explained by an increase in capillarity or changes in mechanical properties of setae and spatulae owing to water absorption by the cuticle at an intermediate RH. The results obtained show dry adhesion limits under different environmental conditions and are important for understanding spider biology.  相似文献   

2.
The attachment pads of fly legs are covered with setae, each ending in small terminal plates coated with secretory fluid. A cluster of these terminal plates contacting a substrate surface generates strong attractive forces that hold the insect on smooth surfaces. Previous research assumed that cohesive forces and molecular adhesion were involved in the fly attachment mechanism. The main elements that contribute to the overall attachment force, however, remained unknown. Multiple local force-volume measurements were performed on individual terminal plates by using atomic force microscopy. It was shown that the geometry of a single terminal plate had a higher border and considerably lower centre. Local adhesion was approximately twice as strong in the centre of the plate as on its border. Adhesion of fly footprints on a glass surface, recorded within 20 min after preparation, was similar to adhesion in the centre of a single attachment pad. Adhesion strongly decreased with decreasing volume of footprint fluid, indicating that the layer of pad secretion covering the terminal plates is crucial for the generation of a strong attractive force. Our data provide the first direct evidence that, in addition to Van der Waals and Coulomb forces, attractive capillary forces, mediated by pad secretion, are a critical factor in the fly's attachment mechanism.  相似文献   

3.
Friction and adhesion forces of the ventral surface of tarsi and metatarsi were measured in the bird spider Aphonopelma seemanni (Theraphosidae) and the hunting spider Cupiennius salei (Ctenidae). Adhesion measurements revealed no detectable attractive forces when the ventral surfaces of the leg segments were loaded and unloaded against the flat smooth glass surface. Strong friction anisotropy was observed: friction was considerably higher during sliding in the distal direction. Such anisotropy is explained by an anisotropic arrangement of microtrichia on setae: only the setal surface facing in the distal direction of the leg is covered by the microtrichia with spatula-like tips. When the leg is pushed, the spatula-shaped tips of microtrichia contact the substrate, whereas, when the leg is pulled over a surface, setae bend in the opposite direction and contact the substrate with their spatulae-lacking sides. In an additional series of experiments, it was shown that desiccation has an effect on the friction force. Presumably, drying of the legs results in reduction of the flexibility of the setae, microtrichia, spatulae, and underlying cuticle; this diminishes the ability to establish proper contact with the substrate and thus reduces the contact forces.  相似文献   

4.
Many researchers have reported that the robust adhesion that enables geckos to move quickly and securely across a range of vertical and horizontal surfaces is provided by the hierarchical structure of their feet (i.e. lamellae, setae, spatulae, etc.). Maintaining this robust adhesion requires an intimate contact between the terminal tips of the spatulae and the surface. The aim of this study was to investigate the effect on the adhesive properties of the spatulae when a particle becomes trapped at the contact surface. Using the Johnson, Kendall and Roberts (JKR) theory, a model was constructed to assist in the analysis of the interactions between the spatula tip, the particle and the surface. The results showed that the keratin (the natural material of the spatula) provides a robust system for adhesion even when there is a particle in the contact area, and the effective contact area of spatulae will be 80%. When the particle is significantly harder than the surface, the adhesion properties of the contact surface influenced by the particle will be more obvious. The results also reveal that the generated adhesion is considerably higher when the spatula is in contact with a softer surface, such as wood or concrete, rather than a hard surface, such as glass or SiO2.  相似文献   

5.
Many wandering spiders bear attachment pads (scopulae) on their tarsi, consisting of hierarchically-branching adhesive setae. Amongst spider families and even species, these show remarkable differences in morphology. Using scanning electron microscopy, the scopula microstructure of sixteen spider species was described, with the focus on pretarsal scopulae (claw tufts). Area and shape of the claw tuft, seta and setule density, as well as seta and spatula dimensions were analysed and compared. Claw tufts of the majority of species studied show a similar gradient in size and shape from anterior to posterior legs: the dimension of pads increases, while setal density decreases. Commonly, there is also a gradient of both the seta and spatula size within the claw tuft: Setae become larger from the proximal to the distal part of the pad, and spatulae size increases in the same direction at the level of individual seta. Often, different hierarchical levels of claw tuft organisation are differently expressed in different species: Species with lower setal density usually have broader setae. Smaller spatula size often implicates higher setule density. Evolutionary and ecological aspects of the scopula origin are discussed.  相似文献   

6.
The study of the adhesion of millions of setae on the toes of geckos has been advanced in recent years with the emergence of new technology and measurement methods. The theory of the mechanism of adhesion by van der Waals forces is now accepted and broadly understood. However, this paper presents limitations of this theory and gives a new hypothesis of the biomechanism of gecko adhesion. The findings are obtained through measurements of the magnitude of the adhesion of setae under three different conditions, to show the close relationship between adhesion and status of the setae. They are reinforced by demonstrating two setal structures, follicle cells and hair, the former making the setae capable of producing bioelectrical charges, which play an important role in attachment and detachment processes. It is shown that the abundant muscular tissues at the base of the setae cells, which are controlled by peripheral nerves, are instrumental in producing the foot movement involved in attachment and detachment. Our study will further uncover the adhesion mechanism of geckos, and provide new ideas for designing and fabricating synthetic setae.  相似文献   

7.
Most biological hairy adhesive systems of insects, arachnids, and reptiles, involved in locomotion, rely not on flat punches on their tips, but rather on spatulate structures. Several hypotheses have been previously proposed to explain the functional importance of this particular contact geometry: (1) enhancement of adaptability to the rough substrate; (2) contact formation by shear force rather than by normal load; (3) increase in total peeling line due to the use of an array of multiple spatulae; (4) contact breakage by peeling off. In the present paper, we used numerical approach to study dynamics of spatulate tips during contact formation on rough substrates. The model clearly demonstrates that the contact area increases under applied shear force, especially when spatulae are misaligned prior to the contact formation. Applied shear force has an optimum describing the situation when maximal contact is formed but no slip occurs. At such equilibrium, maximal adhesion can be generated. This principle manifests the crucial role of spatulate terminal elements in biological fibrillar adhesion.  相似文献   

8.
Climbing assisted by adhesive subdigital pads in gekkotan lizardshas been the subject of intrigue and study for centuries. Manyhypotheses have been advanced to explain the mechanism of adhesion,and recently this phenomenon has been investigated at the levelof individual setae. The ability to isolate, manipulate andrecord adhesive forces from individual setae has provided newinsights, not only into the mechanism of attachment, but alsointo the physical orientation of these structures necessaryto establish attachment, maximize adhesive force, and effectsubsequent release. This, in turn, has enabled a reassessmentof the overall morphology and mode of operation of the adhesivesystem. Digital hyperextension has often been noted as a behavioralcharacteristic associated with the deployment of the gekkotanadhesive system—this is now understandable in the contextof setal attachment and release kinematics, and in the contextof the evolution of this pattern of digital movement from theprimitive pattern of saurian digital kinematics. The perpendicularand parallel preloads associated with setal attachment are nowreconcilable with other morphological aspects of the gekkotanadhesive system—the lateral digital tendon complex andthe vascular sinus network, respectively. Future investigationsof the integrated adhesive system will help to further elucidatethe interdependence of its structural and functional components.  相似文献   

9.
The digital adhesive pads that allow gecko lizards to climb vertical surfaces result from the modification of the oberhautchen layer of the epidermis in normal scales. This produces sticky filaments of 10–100 μm in length, called setae that are composed of various proteins. The prevalent types, termed corneous beta proteins (CBPs), have a low molecular weight (12–20 kDa) and contain a conserved central region of 34 amino acids with a beta-conformation. This determines their polymerization into long beta-filaments that aggregate into corneous beta-bundles that form the framework of setae. Previous studies showed that the prevalent CBPs in the setae of Gekko gecko are cysteine-rich and are distributed from the base to the tip of adhesive setae, called spatulae. The molecular analysis of these proteins, although the three-dimensional structure remains undetermined, indicates that most of them are charged positively and some contain aromatic amino acids. These characteristics may impede adhesion by causing the setae to stick together but may also potentiate the van der Waals interactions responsible for most of the adhesion process on hydrophobic or hydrophilic substrates. The review stresses that not only the nanostructural shape and the high number of setae present in adhesive pads but also the protein composition of setae influence the strength of adhesion to almost any type of substrate. Therefore, formulation of dry materials mimicking gecko adhesiveness should also consider the chemical nature of the polymers utilized to fabricate the future dry adhesives in order to obtain the highest performance.  相似文献   

10.
Host plant surfaces of the codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), vary in microtopography, which can affect its attachment, locomotion, and oviposition behaviour. This study was performed to investigate the effect of surface roughness on the attachment ability of adult insects. Using a centrifugal force device, friction forces of both sexes were assessed on six epoxy resin substrates differing only in the dimensions of their surface asperities, ranging from 0 μm to 12 μm. Surface topography significantly affected friction forces. Maximal force was measured on the smooth substrate whereas minimal force was assessed on microrough substrates with 0.3 μm and 1.0 μm size of asperities. On the remaining rough substrates, friction forces were significantly higher but still lower than on the smooth substrate. Both sexes generated similar forces on the same substrate, in spite of the considerable difference in their body mass. Thus, it is expected that both sexes can attach effectively to differently structured plant substrates in their habitat. However, since smooth surfaces have been reported previously to be the most favorable substrates for ovipositing females of C. pomonella, it is possible that they use their attachment system to sense the substrate texture and prefer those substrates to which their arolia attach the best.  相似文献   

11.
To enable strong attachment forces between pad and substrata, a high proximity between contacting surfaces is required. One of the mechanisms, which can provide an intimate contact of solids, is a high flexibility of both materials. It has been previously presumed that setae of hairy attachment pads of insects are composed of flexible cuticle, and are able to replicate the surface profile. The aim of this work was to visualise the contact behaviour of the setae by freezing-substitution technique to understand setal mechanics while adhering to a smooth surface. This approach revealed considerable differences in the area of the setal tips between contacting and non-contacting pulvilli. Based on the assumption that setae behave like a spring pushed by the tip, a spring constant of 1.31 N m(-1) was calculated from direct measurements of single setae by atomic force microscopy. In order to explain the relationship between the behaviour of the attachment setae at a microscale and leg movements, high-speed video recordings were made of walking flies. This data show that some proximal movement of the leg is present during contact formation with the substrate.  相似文献   

12.
Reduviidae and some other groups of cimicomorphan Heteroptera possess a hairy attachment structure on the apex of the tibia called “fossula spongiosa”. The fossula spongiosa was never studied comparatively across Reduviidae, its fine structure and mode of function is not well documented, and attachment structures in immature stages are virtually unknown. Here, a sample of 171 species of Reduviidae representing 22 subfamilies is examined for presence-absence of the fossula spongiosa on the three pairs of legs. Representatives of 11 of the 22 subfamilies are shown to possess a fossula spongiosa. The fine structure of the fossula spongiosa is examined for a more limited sample of Reduviidae and several Pachynomidae and Nabidae. In addition, scanning micrographs for the fossula spongiosa in other Cimicomorpha are given, among them Anthocoridae, Cimicidae, Microphysidae (first record of a fossula spongiosa), and Thaumastocoridae. The fossula spongiosa in Reduviidae consists of tenent hairs (acanthae) with spatulate or tapering apices interspersed with sensory setae, both of which are embedded in a thick and flexible cuticle, underlain by a hemolymph cavity separated almost entirely from the interior of the remaining tibia by a cuticular invagination. Judging from comparison with non-reduviid Cimicomorpha, this separation of the fossula spongiosa cavity from the tibial interior may be unique to Reduviidae. A simple experiment using live specimens of Platymeris biguttata (Reduviinae) revealed a liquid on the tip of the tenent hairs that might be involved in the attachment of the fossula spongiosa by adhesion mechanisms. The nymphs of Reduviidae whose adults have a fossula spongiosa are here documented for the first time to possess pads of ventrally barbed setae instead of tenent hairs and their tibia lacks the internal cuticular invagination. The nymphal attachment structures seem to rely on increase of friction rather than the adhesion mechanism proposed to be present in the adult. Combined with the tenent setae on the third tarsomere known in some Emesinae and here documented for Saicinae, three types of hairy attachment structures occur on the legs of Reduviidae: tenent hairs (acanthae), which form the fossula spongiosa in many Reduviidae, barbed setae that substitute the fossula in the immatures, and tenent setae on the tarsus which are restricted to only a few taxa.  相似文献   

13.
For the first time, we report the remarkable ability of the terrestrial leaf beetle Gastrophysa viridula to walk on solid substrates under water. These beetles have adhesive setae on their feet that produce a secretory fluid having a crucial role in adhesion on land. In air, adhesion is produced by capillary forces between the fluid-covered setae and the substrate. In general, capillary forces do not contribute to adhesion under water. However, our observations showed that these beetles may use air bubbles trapped between their adhesive setae to walk on flooded, inclined substrata or even under water. Beetle adhesion to hydrophilic surfaces under water was lower than that in air, whereas adhesion to hydrophobic surfaces under water was comparable to that in air. Oil-covered hairy pads had a pinning effect, retaining the air bubbles on their feet. Bubbles in contact with the hydrophobic substrate de-wetted the substrate and produced capillary adhesion. Additional capillary forces are generated by the pad's liquid bridges between the foot and the substrate. Inspired by this idea, we designed an artificial silicone polymer structure with underwater adhesive properties.  相似文献   

14.
A 3D multiscale model is presented which describes the adhesion and deformation of a gecko seta. The multiscale approach combines three models at different length scales: at the top level, on the order of several micrometers, a nonlinear finite element beam model is chosen to capture the branched microstructure of the gecko seta. At the intermediate level, on the order of several nanometers, a second finite element model is used to capture the detailed behaviour of the seta tips, the so-called spatulae. At the lowest level, on the order of a few angstroms, a molecular interaction potential is used to describe the van der Waals adhesion forces between spatulae and substrate. Coarse-graining techiques are used to bridge the scale between the model levels. To illustrate and validate the proposed gecko seta model, numerical pull-off simulations are shown and compared to experimental data from the literature.  相似文献   

15.
16.
17.
A computer assisted three-dimensional model of the jaw, based on linear programming, is presented. The upper and lower attachments of the muscles of mastication have been measured on a single human skull and divided into thirteen independent units on each side--a total of 26 muscle elements. The direction (in three dimensions) and maximum forces that could be developed by each muscle element, the bite reaction and two joint reactions are included in the model. It is shown for symmetrical biting that a model which minimizes the sum of the muscle forces used to produce a given bite force activates muscles in a way which corresponds well with previous observations on human subjects. A model which minimizes the joint reactions behaves differently and is rejected. An analysis of the way the chosen model operates suggests that there are two types of jaw muscles, power muscles and control muscles. Power muscles (superficial masseter, medial pterygoid and some of temporalis) produce the bite force but tend to displace the condyle up or down the articular eminence. This displacement is prevented by control muscles (oblique temporalis and lateral pterygoid) which have very poor moment arms for generating usual bite forces, but are efficient for preventing condylar slide. The model incorporates the concept that muscles consist of elements which can contract independently. It predicts that those muscle elements with longer moment arms relative to the joint are the first to be activated and, as the bite force increases, a ripple of activity spreads into elements with shorter moment arms. In general, the model can be used to study the three-dimensional activity in any system of joints and muscles.  相似文献   

18.
Many animals possess adhesive pads on their feet,which are able to attach to various substrates while controlling adhesive forces during locomotion.This review article studies the morphology of adhesive devices in animals,and the physical mechanisms of wet adhesion and dry adhesion.The adhesive pads are either ‘smooth' or densely covered with special adhesive setae.Smooth pads adhere by wet adhesion,which is facilitated by fluid secreted from the pads,whereas hairy pads can adhere by dry adhesion or wet adhesion.Contact area,distance between pad and substrate,viscosity and surface tension of the liquid filling the gap between pad and substrate are the most important factors which determine the wet adhesion.Dry adhesion was found only in hairy pads,which occurs in geckos and spiders.It was demonstrated that van der Waals interaction is the dominant adhesive force in geckos' adhesion.The bio-inspired applications derived from adhesive pads are also reviewed.  相似文献   

19.
20.
Many representatives of the beetle family Chrysomelidae exhibit a distinctive sexual dimorphism in the structure of adhesive tarsal setae. The present study demonstrates the influence of surface roughness on the friction force of Leptinotarsa decemlineata males and females. The maximum friction force of individual beetles was measured on epoxy resin surfaces (smooth and with asperities ranging from 0.3 to 12.0 microm) using a centrifugal force tester. On the smooth surface, no considerable differences between males and females were found, whereas on rough surfaces, females attached significantly (up to two times) stronger than males. Clawless beetles generated lower forces than intact ones, but demonstrated similar differences between males and females. The results indicate that the female adhesive system has its main functional trait in a stronger specialisation to rough plant surfaces whereas the adhesive system of males possess a certain trade-off between attachment to rough plant surfaces during locomotion on vegetation and to the smooth surface of the female elytra, while mating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号