首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nar promoter of Escherichia coli is maximally induced under anaerobic or microaerobic conditions in the presence of nitrate. We previously demonstrated in batch experiments that the intact nar promoter of E. coli cloned into a pBR322-based plasmid serves as a high-level expression system in a nar mutant of E. coli (Lee et al., 1996b). In this study, we extend characterization of the nar promoter expression system to the fed-batch culture mode, which is widely used in industrial-scale fermentation. From these experiments, it was found that the specific beta-galactosidase activity expressed from the lacZ gene fused to the nar promoter was maximal when host cells were grown under aerobic conditions [dissolved oxygen, (DO) = 80%] to absorbance at 600 nm (OD600) = 35 before induction of the nar promoter by lowering DO to 1-2% with alternating microaerobic and aerobic conditions. Approximately 15 h after induction, the OD600 of the culture reached 135 and the specific beta-galactosidase activity increased to 40,000 Miller units, equivalent to approximately 35% of the total cellular proteins. The specific beta-galactosidase activity before induction was approximately 1,000 Miller units, giving an induction ratio of approximately 40. Based on these results, we conclude that the nar promoter provides a convenient and effective high level expression system under conditions of fed-batch culture.  相似文献   

2.
A nar promoter system (a modified nar promoter in a mutant host Escherichia coli (pMW618/W3110narL(-))), which is maximally induced under microaerobic conditions, was developed and characterized through batch and fed-batch culture to see whether the modified nar promoter can be used as an oxygen-dependent inducible promoter in the absence of nitrate ion. The modified nar promoter (pMW618) derived by mutations at -10 and -35 regions of the wild-type nar promoter does not require nitrate ion for the full induction, while a mutant host E. coli, W3110narL(-), does not express nitrate-dependent regulatory protein, NARL, from the host chromosome. In this study, it was found from fed-batch culture that the specific beta-galactosidase activity expressed from the lacZ gene fused to the modified nar promoter in the absence of nitrate ion was maximal when E. coli was grown under aerobic conditions (dissolved oxygen (DO) at 80%) to absorbance at 600 nm (OD(600)) of 35, and then the modified nar promoter was induced by lowering DO to 1-2% with alternating microaerobic and aerobic conditions. The maximal specific beta-galactosidase activity became 58,000 Miller at OD(600) of 160 with an induction ratio of 20. On the basis of these results, we conclude that the modified nar promoter system (pMW618/W3110narL(-)), requiring only reduction of DO for the full induction, provides a convenient and effective high-level expression system under conditions of fed-batch culture.  相似文献   

3.
4.
The Escherichia coli nar promoter is maximally induced under anaerobic conditions in the presence of nitrate ion or under anaerobic only conditions, depending on the genotype of the E. coli nar promoter. Previously, we found that the E. coli nar promoter has some desirable characteristics as an inducible promoter in the E. coli host strains. In this study, the E. coli nar promoter with lacZ gene at the downstream was cloned onto a broad-host-range Gram-negative vector, pBBR122. It was then induced in some other Gram-negative host strains, such as Agrobacterium, Pseudomonas, and Rhizobium, to determine whether the E. coli nar promoter could be used as an inducible promoter in these strains. From shake-flask experiments it was found that the wild-type E. coli nar promoter cloned onto pBBR122, pNW61, was suppressed under aerobic conditions in an Agrobacterium host strain, was partially induced under microaerobic only conditions, and was maximally induced under microaerobic conditions in the presence of nitrate ion. Whereas the mutant-type E. coli nar promoter cloned onto pBBR122, pNW618, was suppressed under aerobic conditions and was maximally induced under microaerobic conditions, regardless of the presence of nitrate ion. This kind of induction pattern observed for the E. coli nar promoters in the Agrobacterium host strain was similar to that observed for the E. coli nar promoters in the E. coli host strain. On the other hand, it was found that both of the E. coli nar promoters, pNW61 and pNW618, in a Pseudomonas host strain were partially induced under aerobic conditions and were maximally induced under microaerobic conditions, regardless of the presence of nitrate. Finally, it was found that both of the E. coli nar promoters in a Rhizobium host strain were minimally induced, regardless of the presence of oxygen or nitrate ion. Similar induction patterns for the three strains were also observed from fermentor experiments in which the dissolved oxygen (DO) level was tightly controlled. From an evolutionary point of view, the results from the three Gram-negative host strains indicate that the E. coli nar promoter system, including the promoter and regulatory proteins, was best conserved in the Agrobacterium host strain and the least conserved in the Rhizobium host strain. From an industrial point of view, the results indicate that the E. coli nar promoter system can be used as an oxygen-dependent inducible promoter in both Agrobacterium and Pseudomonas host strains.  相似文献   

5.
Summary The nar promoter of Escherichia coli was characterized, which is maximally induced under anaerobic conditions in the presence of nitrate. The following results were obtained; Expression of -galactosidase was optimal at 1 % of nitrate and was not affected much by molybdate; the amount of -galactosidase per unit volume was maximal when the nar promoter was induced at OD600 = 1.7, and when anaerobic condition was made by supplying nitrogen gas. At the optimal condition, the ratio of -galactosidase between before and after induction was approximately 250 and Miller units were approximately 7,500. The results showed that the nar promoter can be used as an inducible promoter.  相似文献   

6.
7.
8.
9.
10.
The chlD gene in Escherichia coli is required for the incorporation and utilization of molybdenum when the cells are grown with low concentrations of molybdate. We constructed chlD-lac operon fusions and measured expression of the fusion, Mo cofactor, and nitrate reductase activities under a variety of growth conditions. The chlD-lac fusion was highly expressed when cells were grown with less than 10 nm molybdate. Increasing concentrations of molybdate caused loss of activity, with less than 5% of the activity remaining at 500 nM molybdate; when tungstate replaced molybdate, it had an identical affect on chlD expression. Expression of chlD-lac was increased in cells grown with nitrate. Strains with chlD-lac plus an additional mutation in a chl or nar gene were constructed to test whether the regulation of chlD-lac required the concerted action of gene products involved with Mo cofactor or nitrate reductase synthesis. Mutations in narL prevented the increase in activity in response to nitrate; mutations in chlB, narC, or narI resulted in partial constitutive expression of the chlD-lac fusion: the fusion was regulated by molybdate, but it no longer required the presence of nitrate for maximal activity. Mutations in chlA, chlE, or chlG which affect Mo cofactor metabolism, did not affect the expression of chlD-lac.  相似文献   

11.
The products of four Escherichia coli genes (narX, narL, narQ, and narP) regulate anaerobic respiratory gene expression in response to nitrate and nitrite. We used lacZ gene and operon fusions to monitor the expression of these nar regulatory genes in response to different growth conditions. Maximal expression of the narXL operon required molybdate, nitrate, and integration host factor. Expression of the narP and narQ genes was weakly repressed by nitrate. The NarL and NarP proteins were required for full nitrate induction of narXL operon expression, whereas the nitrate repression of narP and narQ expression was mediated solely by the NarL protein. narXL operon expression was unaffected by anaerobiosis, whereas expression of narP and narQ was induced approximately fourfold. The Fnr and ArcA proteins were not required for this anaerobic induction.  相似文献   

12.
13.
As a means of integrating cell growth and immobilization, Escherichia coli with the cloned nar promoter on the pBR322 plasmid, which is maximally induced under anaerobic conditions in the presence of nitrate, was immobilized in liquid-core alginate capsules and cultured to a high cell density. The total -galactosidase activity obtained by immobilized cells was about 6 fold greater than that obtained by free cells. Using the immobilized -galactosidase in the whole cells, the substrate lactose was hydrolyzed to glucose and galactose stably with a conversion efficiency of more than 80% for 15 repeated batches at 30°C for 5 days.  相似文献   

14.
Construction in vitro of a cloned nar operon from Escherichia coli.   总被引:13,自引:8,他引:5       下载免费PDF全文
To clone the nar operon of Escherichia coli without an effective selection procedure for the nar+ phenotype, a strategy utilizing nar::Tn5 mutants was employed. Partial segments of the nar operon containing Tn5 insertions were cloned into plasmid pBR322 by using the transposon resistance character for selection. A hybrid plasmid was constructed in vitro from two of these plasmids and isolated by a procedure that involved screening a population of transformed nar(Ts) mutant TS9A for expression of thermal stable nitrate reductase activity. A detailed restriction site map of the resulting plasmid, pSR95, corresponded closely to the composite restriction endonuclease map deduced for the nar region from maps of the cloned nar::Tn5 fragments. When transformed with pSR95, wild-type strain PK27 overproduced the alpha, beta, and gamma subunits of nitrate reductase, although nitrate reductase activity was only slightly increased. The alpha and beta subunits were overproduced about 5- to 10-fold and accumulated mostly as an inactive aggregate in the cytoplasm; the gamma subunit overproduction was detected as a threefold increase in the specific content of cytochrome b555 in the membrane fraction. Functional nitrate reductase and the cytochrome spectrum associated with functional nitrate reductase were restored in the nar::Tn5 mutant EE1 after transformation with pSR95. Although the specific activity of nitrate reductase in this case was less than that of the wild type, both the alpha and beta subunits appeared to be overproduced in an inactive form. In both strains PK27(pSR95) and EE1(pSR95), the formation of nitrate reductase activity and the accumulation of inactive subunits were repressed during aerobic growth. From these observations and the accumulation of inactive subunits were repressed during aerobic growth. From these observations and the demonstration that pSR95 contains a functional nor operon that encodes the alpha, beta, gamma subunits of nitrate reductase.  相似文献   

15.
Merodiploid derivatives bearing an F-linked lac operon (i(+), o(+), z(+), y(+), a(+)) from Escherichia coli were prepared from a Proteus mirabilis strain unable to utilize lactose and from a lac deletion strain of E. coli. A suitable growth medium was found in which the episomal element in the P. mirabilis derivative was sufficiently stable to allow induction of the episome-borne lac operon and thus to permit a comparison of the activities and properties of E. coli lac products in the intracellular environments of P. mirabilis and E. coli. In both derivatives the episomal lac operon was shown to be repressed in the absence of inducer. Kinetics of induction with gratuitous inducer (isopropyl-1-thio-beta-d-galactoside) were similar for both beta-galactosidase activity (beta-d-galactoside galactohydrolase, EC 3.4.1.23) and beta-galactoside transport activity in both derivatives, although the ratio of galactoside transport to beta-galactosidase activity was approximately 1.6-fold higher in the E. coli derivative. Comparison of beta-galactosidase and M-protein (lac y gene product)-specific activities indicated coordinate expression of the induced lac operon in both derivatives. Quantitatively, the maximal beta-galactosidase specific activity was two or three times higher for the E. coli derivative. A significant sodium azide inhibition (65% inhibition by 10 mM sodium azide) of lactose permease-mediated transport of o-nitrophenyl-beta-galactoside from an outside region of high concentration to an inside region of very low concentration ("downhill transport") was observed for the P. mirabilis derivative. Identical conditions for the E. coli derivative yielded only about 15% inhibition. Active transport of thiomethyl-beta-galactoside was similar for both derivatives, the major difference being that active transport was more sensitive to azide poisoning in the P. mirabilis derivative. Preliminary examination of the thiomethyl-beta-galactoside derivatives following active transport did not demonstrate the accumulation of a phosphorylated product in either strain but did reveal an unidentified derivative present in the P. mirabilis merodiploid extract which was not detectable in the E. coli merodiploid.  相似文献   

16.
In previous studies it has been established that in Escherichia coli the three known subunits of anaerobic nitrate reductase are encoded by the narGHI operon. From the nucleotide sequence of the narI region of the operon we conclude that, in addition to the narG and narH genes, the nar operon contains two other open reading frames (ORFs), ORF1 and ORF2, that encode proteins of 26.5 and 25.5 kilodaltons, respectively. Protein fusions to each of the genes in the operon showed that expression of all four genes was similarly regulated. The reading frames of ORF1 and ORF2 were verified, and the N-terminal sequence for the ORF1 fusion protein was determined. The nar operon therefore contains four genes designated and ordered as narGHJI.  相似文献   

17.
Escherichia coli mutants with defined mutations in specific mod genes that affect molybdate transport were isolated and analyzed for the effects of particular mutations on the regulation of the mod operon as well as the fdhF and hyc operons which code for the components of the formate hydrogenlyase (FHL) complex. phi (hyc'-'lacZ+) mod double mutants produced beta-galactosidase activity only when they were cultured in medium supplemented with molybdate. This requirement was specific for molybdate and was independent of the moa, mob, and moe gene products needed for molybdopterin guanine dinucleotide (MGD) synthesis, as well as Mog protein. The concentration of molybdate required for FHL production by mod mutants was dependent on medium composition. In low-sulfur medium, the amount of molybdate needed by mod mutants for the production of half-maximal FHL activity was increased approximately 20 times by the addition of 40 mM of sulfate, mod mutants growing in low-sulfur medium transported molybdate through the sulfate transport system, as seen by the requirement of the cysA gene product for this transport. In wild-type E. coli, the mod operon is expressed at very low levels, and a mod+ merodiploid E. coli carrying a modA-lacZ fusion produced less than 20 units of beta-galactosidase activity. This level was increased by over 175 times by a mutation in the modA, modB, or modC gene. The addition of molybdate to the growth medium of a mod mutant lowered phi (modA'-'lacZ+) expression. Repression of the mod operon was sensitive to molybdate but was insensitive to mutations in the MGD synthetic pathway. These physiological and genetic experiments show that molybdate can be transported by one of the following three anion transport system in E. coli: the native system, the sulfate transport system (cysTWA gene products), and an undefined transporter. Upon entering the cytoplasm, molybdate branches out to mod regulation, fdhF and hyc activation, and metabolic conversion, leading to MGD synthesis and active molybdoenzyme synthesis.  相似文献   

18.
Nitrate reductase (nar) A, B and E mutants of Escherichia coli with plasmids carrying Klebsiella pneumoniae nitrogen fixation (nif) genes reduced acetylene independently of added molybdate, but nar D mutants showed pleiotropic dependence on the concentration of added molybdate for expression of both nar and nif. No complementation of nar mutations by nif occurred; nitrite but not nitrate repressed nif in nar hosts. Derepression of nif occurred in molybdenum-deficient nar D (nif) strains since nitrogenase peptides were present. nifB mutants, thought to have a lesion in the pathway of molybdenum to nitrogenase, as well as nif deletion mutants, had normal nitrate reductase activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号