首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The different behaviour of two isozymes (IsoA and IsoB) of catechol 1,2-dioxygenase (C1,2O) from Acinetobacter radioresistenss13 on a hydrophobic interaction, Phenyl-Sepharose chromatographic column, prompted us to investigate the role of superficial hydrophobicity on structural-functional aspects for such class of enzymes. The interaction of 8-anilino-1-naphtalenesulphonate (ANS), a fluorescent probe known to bind to hydrophobic sites in proteins, revealed that the two isoenzymes have a markedly different hydrophobicity degree although a similar number of hydrophobic superficial sites were estimated (2.65 for IsoA and 2.18 for IsoB). ANS is easily displaced by adding the substrates catechol or 3-methylcatechol to the adduct, suggesting that the binding sites are in the near surroundings of the catalytic clefts. The analysis of the hydropathy profiles and the possible superficial cavities allowed to recognize the most feasible region for ANS binding.The lower hydrophobicity detected in the near surroundings of the catalytic pocket of IsoB supports its peculiarity to lose the catalytic metal ions more easily than IsoA. As previously suggested for other metalloenzymes, the presence of more hydrophilic and/or smaller residues near to the active site of IsoB is expected to increase the metal ligands mobility thus increasing the metal ion dissociation rate constants, estimated to be 0.078 h–1 and 0.670 h–1 for IsoA and IsoB respectively. Abbreviations: C1,2O – catechol dioxygenase; ANS – 8-anilino-1-naphthalenesulphonate; PHO – phenol hydroxylase oxygenase  相似文献   

2.
The reversible active site metal ion removal process for two catechol 1,2-dioxygenase isoenzymes (IsoA and IsoB) isolated from Acinetobacter radioresistens S13 has been monitored using circular dichroism and fluorescence spectroscopic techniques. IsoA and IsoB are homodimers, containing one iron(III) ion per subunit. Their amino acid sequence identity is 48.4%. Previous experiments suggested that structural diversities could be responsible for the differential thermal and pH stabilities of the two isoenzymes and of their distinct demetallation kinetics. The far-UV CD spectra of IsoA and IsoB catechol 1,2-dioxygenases from A. radioresistens S13 provide information on their secondary structures. IsoB appears to have a content of alpha-helices higher than IsoA. Upon metal ion removal, both proteins reversibly lose part of their secondary structure following distinct pathways. CD spectra simulations allowed us to estimate the content of alpha-helices, beta-sheets, and turns for each isoenzyme and to monitor the secondary structure rearrangements. The metal ion withdrawal has large influence on the secondary structure: in particular a significant reduction of alpha-helices content is observed for both isoenzymes. Intrinsic fluorescence emission spectra clearly support such results, adding information on the local environment changes of the tryptophan residues. The positioning of Trp250 in IsoB has been shown to be of particular interest for monitoring the local structure changes occurring upon metal ion removal. For the first time these studies allow to underline the role of active site iron ions on dioxygenases folding and stability, further evidencing the differences in structural assembling between the two isoenzymes from A. radioresistens S13.  相似文献   

3.
Two different isozymes (Iso A and Iso B) of catechol 1,2 dioxygenase (C1,2O) were isolated from cultures of A. radioresistens grown in two different media, containing phenol and benzoate respectively. In the phenol medium the bacteria expressed about 90% of Iso A, whereas in the benzoate medium the Iso A/Iso B ratio was 40:60. The two proteins have different molecular masses, isoelectric points and N-terminal sequences that are not consistent with simple post-translational modifications. Furthermore, their behaviour differs at high temperatures (42 degrees C-47 degrees C) and at moderately acidic pH (pH 6.0): Iso A proved to be the more stable under conditions of environmental stress. Hybridisation analysis with an A. calcoaceticus catA-derived probe revealed that A. radioresistens C1,2O proteins are encoded by two chromosomally located genes. Bidimensional electrophoresis (2DE) maps of crude extracts of cells grown in different carbon sources (phenol, benzoate and acetate) clearly demonstrated a differential induction pattern for the two proteins. The hypothesis of a double set of genes, one for benzoate catabolism and the other for phenol catabolism, is discussed, and analogies are drawn with other known C1,2Os.  相似文献   

4.
The amine oxidase from Trichosporon cutaneum X4 grown on ethylamine as carbon, nitrogen and energy source was purified to near homogeneity. The purified enzyme showed the highest resistance to heat of any amine oxidase hitherto characterized from a yeast (half-life at 62°C, 14 min). Measurement of kinetic parameters as a function of carbon chain length showed results typical of a benzylamine oxidase. Both non-denaturing- and sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed multiple bands, and dimethyl suberimidate cross-linking studies revealed that the enzyme consisted of multimers of two polypeptide chains of Mr respectively 19,000 and 26,000. The smallest structure to show activity probably contained two of each kind of subunit.Abbreviation SDS sodium dodecyl sulphate  相似文献   

5.
The two-component anthranilate 1,2-dioxygenase of the bacterium Acinetobacter sp. strain ADP1 was expressed in Escherichia coli and purified to homogeneity. This enzyme converts anthranilate (2-aminobenzoate) to catechol with insertion of both atoms of O(2) and consumption of one NADH. The terminal oxygenase component formed an alpha(3)beta(3) hexamer of 54- and 19-kDa subunits. Biochemical analyses demonstrated one Rieske-type [2Fe-2S] center and one mononuclear nonheme iron center in each large oxygenase subunit. The reductase component, which transfers electrons from NADH to the oxygenase component, was found to contain approximately one flavin adenine dinucleotide and one ferredoxin-type [2Fe-2S] center per 39-kDa monomer. Activities of the combined components were measured as rates and quantities of NADH oxidation, substrate disappearance, product appearance, and O(2) consumption. Anthranilate conversion to catechol was stoichiometrically coupled to NADH oxidation and O(2) consumption. The substrate analog benzoate was converted to a nonaromatic benzoate 1,2-diol with similarly tight coupling. This latter activity is identical to that of the related benzoate 1, 2-dioxygenase. A variant anthranilate 1,2-dioxygenase, previously found to convey temperature sensitivity in vivo because of a methionine-to-lysine change in the large oxygenase subunit, was purified and characterized. The purified M43K variant, however, did not hydroxylate anthranilate or benzoate at either the permissive (23 degrees C) or nonpermissive (39 degrees C) growth temperatures. The wild-type anthranilate 1,2-dioxygenase did not efficiently hydroxylate methylated or halogenated benzoates, despite its sequence similarity to broad-substrate specific dioxygenases that do. Phylogenetic trees of the alpha and beta subunits of these terminal dioxygenases that act on natural and xenobiotic substrates indicated that the subunits of each terminal oxygenase evolved from a common ancestral two-subunit component.  相似文献   

6.
恶臭假单胞菌ND6菌株的萘降解质粒pND6-1中编码儿茶酚1,2-双加氧酶的catA基因在大肠杆菌中进行了克隆和表达,并研究表达产物的酶学性质。结果表明:酶的Km为0.019μmol/L,Vmax为1.434μmol/(min.mg);具有很好的耐热性,在50℃保温45min后仍能够保留酶活力的93.7%;Fe2+对酶活性有显著的促进作用,其比活力是对照反应的292%;酶对4-氯儿茶酚的催化活性非常低,属于Ⅰ型儿茶酚1,2-双加氧酶。以萘为底物生长时,ND6菌株的细胞提取液中既存在催化邻位裂解途径的儿茶酚1,2-双加氧酶活性,也存在催化间位裂解途径的儿茶酚2,3-双加氧酶活性。以苯甲酸、对羟基苯甲酸和苯乙酸为唯一碳源生长时,ND6菌株细胞提取液的儿茶酚1,2-双加氧酶活性远远大于儿茶酚2,3-双加氧酶活性。表明ND6菌株既能通过儿茶酚间位裂解途径降解萘,也能通过儿茶酚邻位裂解途径降解萘,而以苯甲酸、对羟基苯甲酸和苯乙酸为诱导物时只利用儿茶酚邻位裂解途径。  相似文献   

7.
Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad   总被引:76,自引:0,他引:76  
A pseudomonad has been isolated from sewage, which can utilize 3-chlorobenzoic acid as a sole carbon source. In cells grown on benzoate the enzymes of the -ketoadipic acid pathway are present. Considerable enzymic activities for chlorinated substrates were found in benzoate grown cells only for the oxygenation of 3-chlorobenzoate and the dehydrogenation of 3- and 5-chloro-3,5-cyclohexadiene-1,2-diol-1-carboxylic acid. 3-Chlorobenzoate grown cells show additional high activities for the turnover of 3- and 4-chlorocatechols and chloromuconic acids.Abbreviations Used DHB (-)-3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (derived from the trivial name, dihydrodihydroxybenzoate) - 3- and 5-Cl-DHB correspondingly 3- and 5-chloro-3,5-cyclohexadiene-1,2-diol-1-carboxylic acid  相似文献   

8.
The cytoplasmic and mitochondrial forms of glutamine synthetase (GSase) were purified from the liver of the gulf toadfish Opsanus beta by modifications of methods previously applied to dogfish shark to examine their kinetic and structural properties. Both isozymes have subunit molecular weights of approximately 42 kDa (by SDS-PAGE) and native molecular weights of approximately 365 kDa (by gel filtration chromatography), suggesting an octomeric arrangement of the native enzymes. Identity of the purified proteins as GSase was further confirmed by western blot analysis using rabbit anti-chicken GSase antibodies. The requirement for MgCl2 and several kinetic properties (e.g.,Kms for glutamate, ATP and ammonia) of the two isozymes were very similar. Also notable was that both isozymes had Kms for ammonia in the micromolar range (like the dogfish enzyme). These results suggest that the enzymes are probably easily saturated with ammonia under physiological conditions. The two GSase isozymes differed substantially in terms of inhibition by methionine sulfoximine, pH optima, specific activity and ratios of transferase to biosynthetic activities. Given the similarities in size, these results suggest that the molecular model of a single gene coding for both isozymes as has been demonstrated in the dogfish shark may not apply to the toadfish GSases.  相似文献   

9.
10.
New Planococcus sp. strain S5 able to grow on salicylate or benzoate as sole carbon source was isolated from activated sludge adapted to sodium salicylate degradation. S5 was determined to be a strictly aerobic, gram-positive, catalase positive, oxidase negative, non-motile, non-spore forming coccus. The strain harboured a plasmid, named pLS5. The S5 strain when grown on salicylate expressed both catechol 1,2-dioxygenase and catechol 2,3-dioxygenase activities and degraded this substrate by both the ortho and meta pathways while grown on benzoate expressed only catechol 1,2-dioxygenase activity. Curing of the plasmid from the strain showed that plasmid pLS5 was involved in salicylate degradation by the meta pathway.  相似文献   

11.
For enhancement ofcis,cis-muconate productivity from benzoate, catechol 1,2-dioxygenase (C12O) which catalyzes the rate-limiting step (catechol conversion tocis,cis-muconate) was cloned and expressed in recombinantPseudomonas putida BCM114. At higher benzoate concentrations (more than 15 mM),cis,cis-muconate productivity gradually decreased and unconverted catechol was accumulated up to 10 mM in the case of wildtypeP. putida BM014, whereascis,cis-muconate productivity continuously increased and catechol was completely transformed tocis,cis-muconate forP. putida BCM114. Specific C12O activity ofP. putida BCM114 was about three times higher than that ofP. putida BM014, and productivity was enhanced more than two times.  相似文献   

12.
This work demonstrates the ring-cleavage pathways of catechol on Pseudomonas cepacia ATCC 29351, formed upon its growth on salicylate and benzoate, each as a sole carbon source. When grown on salicylate, P. cepacia induces only the catechol ortho pathway by its induction of catechol 1,2-dioxygenase. However, interestingly, benzoate-grown cells induce the ortho and meta pathways for the biodegradation of catechol, by inducing simultaneously catechol 1,2-dioxygenase and 2,3-dioxygenase, respectively, in the ratio of 7:1. The results indicate that P. cepacia ATCC 29351 possesses the genetic capacity for enzymes of both the ortho- and meta-cleavage pathways of benzoate degradation, although the phenotypic expression for the ortho pathway is higher. The simultaneous induction of catechol 1,2- and 2,3-dioxygenase is not detected in salicylate degradation. Although catechol is the metabolic intermediate for both salicylate and benzoate, catechol did not induce either pathway when used as a sole carbon source.  相似文献   

13.
Arthrobotrys amerospora ATCC 34468 produced glucoamylase in a medium containing maize starch as carbon source. On native PAGE, crude glucoamylase showed three isoenzymes which were designated as Glu I, Glu II, Glu III according to their electrophoretic mobility. These were purified by column chromatography techniques. The energy of binding for each glucoamylase was calculated using Hiromi's kinetic based calculation. At subsite 1, the binding energies for Glu I, II and III were found to be negative.  相似文献   

14.
The ability of microorganisms to assimilate aromatic substances as alternative carbon sources is the basis of biodegradation of natural as well as industrial aromatic compounds. In this study, Corynebacterium glutamicum was grown on benzoate as sole carbon and energy source. To extend the scarce knowledge about physiological adaptation processes occurring in this cell compartment, the membrane proteome was investigated under quantitative and qualitative aspects by applying shotgun proteomics to reach a comprehensive survey. Membrane proteins were relatively quantified using an internal standard metabolically labeled with 15N. Altogether, 40 proteins were found to change their abundance during growth on benzoate in comparison to glucose. A global adaptation was observed in the membrane of benzoate‐grown cells, characterized by increased abundance of proteins of the respiratory chain, by a starvation response, and by changes in sulfur metabolism involving the regulator McbR. Additional to the relative quantification, stable isotope‐labeled synthetic peptides were used for the absolute quantification of the two benzoate transporters of C. glutamicum, BenK and BenE. It was found that both transporters were expressed during growth on benzoate, suggesting that both contribute substantially to benzoate uptake.  相似文献   

15.
cis,cis-Muconate cycloisomerase was purified to homogeneity from cells of Rhodococcus rhodochrous N75 grown at the expense of benzoate and p-toluate as the sole sources of carbon. A single cycloisomerase was found to be induced in this organism with no isoforms being detected when R. rhodochrous N75 was grown on either benzoate or p-toluate as the sole source of carbon. The enzyme is hexameric with a single subunit Mr of 40,000. cis,cis-Muconate cycloisomerase from R. rhodochrous N75 displayed strict regio- and stereospecificity whereby cis,cis-muconate is cycloisomerized to (4S)-muconolactone and 2-methyl- and 3-methyl-substituted muconates are cycloisomerized to 2-methyl- and 4-methyl-substituted muconolactones by 1,4- and 3,6-cycloisomerization, respectively.  相似文献   

16.
Catechol 1,2-dioxygenase (C12O) was purified to electrophoretic homogeneity from Acinetobacter sp. DS002. The pure enzyme appears to be a homodimer with a molecular mass of 66 kDa. The apparent Km and Vmax for intradiol cleavage of catechol were 1.58 μM and 2 units per mg of protein respectively. Unlike other C12Os reported in the literature, the catechol 1,2-dioxygenase of Acinetobacter showed neither intradiol nor extradiol cleavage activity when substituted catechols were used as substrates. However, it has shown mild intradiol cleavage activity when benzenetriol was used as substrate. As determined by two dimensional electrophoresis (2DE) followed MALDI-TOF/TOF analyses and gel permeation chromatography, no isoforms of C12O was observed in Acinetobacter sp. DS002. Further, the C12O was seen only in cultures grown in benzoate and it was completely absent in succinate grown cultures. Based on the sequence information obtained from MS/MS data, degenerate primers were designed to amplify catA gene from the genomic DNA of Acinetobacter sp. DS002. The sequence of the PCR amplicon and deduced amino acid sequence showed 97% similarity with a catA gene of Acinetobacter baumannii AYE (YP_001713609).  相似文献   

17.
The degradation pathways of benzoate at high concentration in Pseudomonas putida P8 were directly elucidated through mass spectrometric identification of some key catabolic enzymes. Proteins from P. putida P8 grown on benzoate or succinate were separated using two-dimensional gel electrophoresis. For cells grown on benzoate, eight distinct proteins, which were absent in the reference gel patterns from succinate-grown cells, were found. All the eight proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as catabolic enzymes involved in benzoate degradation. Among them, CatB (EC5.5.1.1), PcaI (EC2.8.3.6), and PcaF (EC2.3.1.174) were the enzymes involved in the ortho-cleavage pathway; DmpC (EC1.2.1.32), DmpD (EC3.1.1.-), DmpE (EC4.2.1.80), DmpF (EC1.2.1.10), and DmpG (EC4.1.3.-) were the meta-cleavage pathway enzymes. In addition, enzyme activity assays showed that the activities of both catechol 1,2-dioxygenase (C12D; EC1.13.11.1) and catechol 2,3-dioxygenase (C23D; EC1.13.11.2) were detected in benzoate-grown P. putida cells, undoubtedly suggesting the simultaneous expression of both the ortho- and the meta-cleavage pathways in P. putida P8 during the biodegradation of benzoate at high concentration.  相似文献   

18.
Liu Y  Zhang J  Zhang Z 《Biodegradation》2004,15(3):205-212
A bacterial strain ZL5, capable of growing on phenanthrene as a sole carbon and energy source but not naphthalene, was isolated by selective enrichment from crude-oil-contaminated soil of Liaohe Oil Field in China. The isolate was identified as a Sphingomonas sp. strain on the basis of 16S ribosomal DNA analysis. Strain ZL5 grown on phenanthrene exhibited catechol 2,3-dioxygenase (C23O) activity but no catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxygenase activities. This suggests that the mode of cleavage of phenanthrene by strain ZL5 could be meta via the intermediate catechol, which is different from the protocatechuate way of other two bacteria, Alcaligenes faecelis AFK2 and Nocardioides sp. strain KP7, also capable of growing on phenanthrene but not naphthalene. A resident plasmid (approximately 60 kb in size), designated as pZL, was detected from strain ZL5. Curing the plasmid with mitomycin C and transferring the plasmid to E. coli revealed that pZL was responsible for polycyclic aromatic hydrocarbons degradation. The C23O gene located on plasmid pZL was cloned and overexpressed in E. coli JM109(DE3). The ring-fission activity of the purified C23O from the recombinant E. coli on dihydroxylated aromatics was in order of catechol > 4-methylcatechol > 3-methylcatechol > 4-chlorocatechol > 3,4-dihydroxyphenanthrene > 3-chlorocatechol.  相似文献   

19.
Pseudomonas (diff) spp. was isolated from a complex petrochemical sludge, using benzoate as the sole source of carbon. The organism could metabolize 3-chlorobenzoate, releasing approximately 30% of organically bound chloride. 3-Chlorodihydrodihydroxybenzoate and 3-chlorocatechol were confirmed as pathway intermediates by mass spectral and HPLC analysis. About 3-fold higher levels of catechol 1,2-oxygenase were detected in cells grown on 3-chlorobenzoate as compared to that of benzoate. 3-Chlorocatechol inhibited the catechol 1,2-oxygenase activity, when used as assay substrate. A 15-fold purified catechol 1,2-oxygenase had a Km of 0.37 mumole and Vmax of 2.3 with 3-chlorocatechol. Catechol gave Km of 0.2 mumole and Vmax of 40, suggesting that 3-chlorocatechol is not metabolised further and hence blocks the metabolic pathway for 3-chlorobenzoate degradation. In contrast catechol 1,2-oxygenase was not inhibited by 4-chlorocatechol and probably is an intermediate for the total/complete degradation of 3-chlorobenzoate (approx. 30%).  相似文献   

20.
Gram-positive bacteria of the genus Rhodococcus catabolize p-hydroxybenzoate (PHB) through the initial formation of 3,4-dihydroxybenzoate. High levels of p-hydroxybenzoate hydroxylase (PHBH) activity are induced in six different Rhodococcus species when these strains are grown on PHB as sole carbon source. The PHBH enzymes were purified to apparent homogeneity and appeared to be homodimers of about 95 kD with each subunit containing a relatively weakly bound FAD. In contrast to their counterparts from gram-negative microorganisms, the Rhodococcus PHBH enzymes prefer NADH to NADPH as external electron donor. All purified enzymes were inhibited by Cl and for five of six enzymes more pronounced substrate inhibition was observed in the presence of chloride ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号