首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3′→5′ exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. The efficiency of the exonuclease as a proofreading activity for mispairs containing a DNA lesion varies, however, being dependent upon both the DNA polymerase/exonuclease and the type of DNA lesion. The exonuclease activities intrinsic to the T4 polymerase (family B) and DNA polymerase γ (family A) proofread DNA mispairs opposite endogenous DNA lesions, including alkylation, oxidation, and abasic adducts. However, the exonuclease of the Klenow polymerase cannot discriminate between correct and incorrect bases opposite alkylation and oxidative lesions. DNA damage alters the dynamics of the intramolecular partitioning of DNA substrates between the 3′→5′ exonuclease and polymerase activities. Enzymatic idling at lesions occurs when an exonuclease activity efficiently removes the same base that is preferentially incorporated by the DNA polymerase activity. Thus, the exonuclease activity can also act as a kinetic barrier to translesion synthesis (TLS) by preventing the stable incorporation of bases opposite DNA lesions. Understanding the downstream consequences of exonuclease activity at DNA lesions is necessary for elucidating the mechanisms of translesion synthesis and damage-induced cytotoxicity.  相似文献   

2.
Deamination of adenine can occur spontaneously under physiological conditions, and is enhanced by exposure of DNA to ionizing radiation, UV light, nitrous acid, or heat, generating the highly mutagenic lesion of deoxyinosine in DNA. Such DNA lesions tends to generate A:T to G:C transition mutations if unrepaired. In Escherichia coli, deoxyinosine is primarily removed through a repair pathway initiated by endonuclease V (endo V). In this study, we compared the repair of three mutagenic deoxyinosine lesions of A-I, G-I, and T-I using E. coli cell-free extracts as well as reconstituted protein system. We found that 3′-5′ exonuclease activity of DNA polymerase I (pol I) was very important for processing all deoxyinosine lesions. To understand the nature of pol I in removing damaged nucleotides, we systemically analyzed its proofreading to 12 possible mismatches 3′-penultimate of a nick, a configuration that represents a repair intermediate generated by endo V. The results showed all mismatches as well as deoxyinosine at the 3′ penultimate site were corrected with similar efficiency. This study strongly supports for the idea that the 3′-5′ exonuclease activity of E. coli pol I is the primary exonuclease activity for removing 3′-penultimate deoxyinosines derived from endo V nicking reaction.  相似文献   

3.
Thymine glycol (Tg) is the most common oxidation product of thymine and is known to be a strong block to replicative DNA polymerases. A previously solved structure of the bacteriophage RB69 DNA polymerase (RB69 gp43) in complex with Tg in the sequence context 5′-G-Tg-G shed light on how Tg blocks primer elongation: The protruding methyl group of the oxidized thymine displaces the adjacent 5′-G, which can no longer serve as a template for primer elongation [Aller, P., Rould, M. A., Hogg, M, Wallace, S. S. & Doublié S. (2007). A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Proc. Natl. Acad. Sci. USA, 104, 814-818.].Several studies showed that in the sequence context 5′-C-Tg-purine, Tg is more likely to be bypassed by Klenow fragment, an A-family DNA polymerase. We set out to investigate the role of sequence context in Tg bypass in a B-family polymerase and to solve the crystal structures of the bacteriophage RB69 DNA polymerase in complex with Tg-containing DNA in the three remaining sequence contexts: 5′-A-Tg-G, 5′-T-Tg-G, and 5′-C-Tg-G. A combination of several factors—including the associated exonuclease activity, the nature of the 3′ and 5′ bases surrounding Tg, and the cis-trans interconversion of Tg—influences Tg bypass. We also visualized for the first time the structure of a well-ordered exonuclease complex, allowing us to identify and confirm the role of key residues (Phe123, Met256, and Tyr257) in strand separation and in the stabilization of the primer strand in the exonuclease site.  相似文献   

4.
V Bailly  W G Verly 《FEBS letters》1984,178(2):223-227
The 3' AP endonucleases (class I) are said to hydrolyze the phosphodiester bond 3' to AP sites yielding 3'-OH and 5'-phosphate ends; on the other hand, the resulting 3' terminal AP site is not removed by the 3'-5' exonuclease activity of the Klenow fragment [1]. We show that AP sites in DNA are easily removed by the 3'-5' exonuclease activity of the Klenow fragment and that they are excised as deoxyribose-5-phosphate. It is suggested that the 3' AP endonucleases are perhaps not the hydrolases they are supposed to be.  相似文献   

5.
Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.  相似文献   

6.
7.
The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.  相似文献   

8.
9.
Posttranslational modifications on the N terminus of histone H3 act in a combinatorial fashion to control epigenetic responses to extracellular stimuli. Lysine-specific demethylase-1 (LSD1) represents an emerging epigenetic target class for the discovery of novel antitumor therapies. In this study, a high-throughput mass spectrometry (HTMS) assay was developed to measure LSD1-catalyzed demethylation of lysine-4 on several H3 substrates. The assay leverages RapidFire chromatography in line with a triple stage quadrupole detection method to measure multiple LSD1 substrate and product reactions from an assay well. This approach minimizes artifacts from fluorescence interference and eliminates the need for antibody specificity to methylated lysines. The assay was robust in a high-throughput screen of a focused library consisting of more than 56,000 unique chemical scaffolds with a median Z′ of 0.76. Validated hits from the primary screen were followed up by successive rounds of virtual and HTMS screening to mine for related structures in a parent library consisting of millions of compounds. The screen resulted in the rapid discovery of multiple chemical classes amenable to medicinal chemistry optimization. This assay was further developed into a generic platform capable of rapidly screening epigenetic targets that use the N-terminal tail of histone H3 as a substrate.  相似文献   

10.
11.
Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and generates the second messenger cyclic GMP (cGMP). Recently, purified sGC α1β1 has been shown to additionally generate the cyclic pyrimidine nucleotides cCMP and cUMP. However, since cyclic pyrimidine nucleotide formation occurred only the presence of Mn2+ but not Mg2+, the physiological relevance of these in vitro findings remained unclear. Therefore, we studied cyclic nucleotide formation in intact cells. We observed NO-dependent cCMP- and cUMP formation in intact HEK293 cells overexpressing sGC α1β1 and in RFL-6 rat fibroblasts endogenously expressing sGC, using HPLC–tandem mass spectrometry. The identity of cCMP and cUMP was unambiguously confirmed by HPLC–time-of-flight mass spectrometry. Our data indicate that cCMP and cUMP play second messenger roles and that Mn2+ is a physiological sGC cofactor.  相似文献   

12.
2′,3′-O-(2,4,6-Trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP) is a fluorescent analogue of ATP. MgTNP-ATP was found to be an allosteric activator of pyruvate carboxylase that exhibits competition with acetyl CoA in activating the enzyme. There is no evidence that MgTNP-ATP binds to the MgATP substrate binding site of the enzyme. At concentrations above saturating, MgATP activates bicarbonate-dependent ATP cleavage, but inhibits the overall reaction. The fluorescence of MgTNP-ATP increases by about 2.5-fold upon binding to the enzyme and decreases on addition of saturating acetyl CoA. However, not all the MgTNP-ATP is displaced by acetyl CoA, or with a combination of saturating concentrations of MgATP and acetyl CoA. The kinetics of the binding of MgTNP-ATP to pyruvate carboxylase have been measured and shown to be triphasic, with the two fastest phases having pseudo first-order rate constants that are dependent on the concentration of MgTNP-ATP. The kinetics of displacement from the enzyme by acetyl CoA have been measured and also shown to be triphasic. A model of the binding process is proposed that links the kinetics of MgTNP-ATP binding to the allosteric activation of the enzyme.  相似文献   

13.
14.
HD-domain phosphohydrolases have nucleotidase and phosphodiesterase activities and play important roles in the metabolism of nucleotides and in signaling. We present three 2.1-Å-resolution crystal structures (one in the free state and two complexed with natural substrates) of an HD-domain phosphohydrolase, the Escherichia coli 5′-nucleotidase YfbR. The free-state structure of YfbR contains a large cavity accommodating the metal-coordinating HD motif (H33, H68, D69, and D137) and other conserved residues (R18, E72, and D77). Alanine scanning mutagenesis confirms that these residues are important for activity. Two structures of the catalytically inactive mutant E72A complexed with Co2+ and either thymidine-5′-monophosphate or 2′-deoxyriboadenosine-5′-monophosphate disclose the novel binding mode of deoxyribonucleotides in the active site. Residue R18 stabilizes the phosphate on the Co2+, and residue D77 forms a strong hydrogen bond critical for binding the ribose. The indole side chain of W19 is located close to the 2′-carbon atom of the deoxyribose moiety and is proposed to act as the selectivity switch for deoxyribonucleotide, which is supported by comparison to YfdR, another 5′-nucleotidase in E. coli. The nucleotide bases of both deoxyriboadenosine-5′-monophosphate and thymidine-5′-monophosphate make no specific hydrogen bonds with the protein, explaining the lack of nucleotide base selectivity. The YfbR E72A substrate complex structures also suggest a plausible single-step nucleophilic substitution mechanism. This is the first proposed molecular mechanism for an HD-domain phosphohydrolase based directly on substrate-bound crystal structures.  相似文献   

15.
Rapid and reliable assessment of Acinetobacter baumannii resistance to quinolones was successfully achieved through pyrosequencing of the gyrA and parC quinolone-resistance determining regions. A strong correlation was found between quinolone resistance and mutations in gyrA codon 83 and/or in the parC gene (codons 80 or 84). Absence of QRDR mutations was associated with susceptibility to quinolones.  相似文献   

16.
17.
The degradation and biological role of the cyclic pyrimidine nucleotide cCMP is largely elusive. We investigated nucleoside 3′,5′-cyclic monophosphate (cNMP) specificity of six different recombinant phosphodiesterases (PDEs) by using a highly-sensitive HPLC–MS/MS detection method. PDE7A1 was the only enzyme that hydrolyzed significant amounts of cCMP. Enzyme kinetic studies using purified GST-tagged truncated PDE7A1 revealed a cCMP KM value of 135 ± 19 μM. The Vmax for cCMP hydrolysis reached 745 ± 27 nmol/(min mg), which is about 6-fold higher than the corresponding velocity for adenosine 3′,5′-cyclic monophosphate (cAMP) degradation. In summary, PDE7A is a high-speed and low-affinity PDE for cCMP.  相似文献   

18.
Determination of RNA quality is a critical first step in obtaining meaningful gene expression data. The PCR-based 3′:5′ assay is an RNA quality assessment tool. This assay is a simple, fast, and low-cost method of selecting samples for further analysis. However, its practical applications are unexploited primarily because of the absence of an experimental threshold. We show that, by anchoring the 5′ assay a specific distance from the 3′ end of the sequence and by spacing the 3′ at a distance of a number of nucleotides, a cutoff determines whether a sample is suitable for downstream quantification studies.  相似文献   

19.
In this study, we developed a simple label-free method for the detection of catalase (CAT) using liquid crystals (LCs). The optical appearance of LCs changed from bright to dark when hydrogen peroxide was in contact with the dodecanal-doped nematic LC, 4-cyano-4′-pentylbiphenyl (5CB). Since hydrogen peroxide can oxidize aldehyde into carboxylic acid, an orientational transition of the LC from the planar to homeotropic state was induced by the self-assembled carboxylate monolayer formed at the aqueous/LC interface. The optical response of LCs exhibited a higher sensitivity to the presence of hydrogen peroxide in an alkaline solution. A new type of LC-based sensor was developed to monitor the presence of CAT in the aqueous phase. Due to the enzymatically catalytic hydrolysis of hydrogen peroxide, the bright-to-dark shift in the optical signal did not take place in the aqueous mixture of hydrogen peroxide and catalase. In contrast, the optical response changed from bright to dark when the mixture in the optical cell was replaced with an aqueous solution of hydrogen peroxide. Considering the optical response of LCs related to the absence and presence of hydrogen peroxide, the aldehyde-doped 5CB might have potential utility in real-time recognition and detection of chemical and biological events associated with hydrogen peroxide.  相似文献   

20.
The Mre11-Rad50 (MR) complex is a central player in DNA repair and is implicated in the processing of DNA ends caused by double strand breaks. Recent crystal structures of the MR complex suggest that several conformational rearrangements occur during its ATP hydrolysis cycle. A comparison of the Mre11 dimer interface from these structures suggests that the interface is dynamic in nature and may adopt several different arrangements. To probe the functional significance of the Mre11 dimer interface, we have generated and characterized a dimer disruption Mre11 mutant (L101D-Mre11). Although L101D-Mre11 binds to Rad50 and dsDNA with affinity comparable with the wild-type enzyme, it does not activate the ATP hydrolysis activity of Rad50, suggesting that the allosteric communication between Mre11 and Rad50 has been interrupted. Additionally, the dsDNA exonuclease activity of the L101D-MR complex has been reduced by 10-fold under conditions where processive exonuclease activity is required. However, we unexpectedly found that under steady state conditions, the nuclease activity of the L101D-MR complex is significantly greater than that of the wild-type complex. Based on steady state and single-turnover nuclease assays, we have assigned the rate-determining step of the steady state nuclease reaction to be the productive assembly of the complex at the dsDNA end. Together, our data suggest that the Mre11 dimer interface adopts at least two different states during the exonuclease reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号