首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liang GZ  Ma XY  Li YC  Lv FL  Yang L 《Bio Systems》2011,105(1):101-106
This article offers a novel sequence-based approach to discriminate outer membrane proteins (OMPs). The first step is to use a new representation approach, factor analysis scales of generalized amino acid information (FASGAI) representing hydrophobicity, alpha and turn propensities, bulky properties, compositional characteristics, local flexibility and electronic properties, etc., to characterize sequences of OMPs and non-OMPs. The subsequent data is then transformed into a uniform matrix by the auto cross covariance (ACC). The second step is to develop discrimination predictors of OMPs from non-OMPs using a support vector machine (SVM). The SVM predictors thus successfully produce a high Matthews correlation coefficient (MCC) of 0.916 on 208 OMPs from non-OMPs including 206 α-helical membrane proteins and 673 globular proteins by a fivefold cross validation test. Meanwhile, overall MCC values of 0.923 and 0.930 are obtained for the discrimination OMPs from the α-helical membrane proteins and the globular proteins, respectively. The results demonstrate that the FASGAI-ACC-SVM combination approach shows great prospect of application in the field of bioinformatics or proteomics studies.  相似文献   

2.
Outer membrane proteins (OMPs) play important roles in cell biology. In addition, OMPs are targeted by multiple drugs. The identification of OMPs from genomic sequences and successful prediction of their secondary and tertiary structures is a challenging task due to short membrane-spanning regions with high variation in properties. Therefore, an effective and accurate silico method for discrimination of OMPs from their primary sequences is needed. In this paper, we have analyzed the performance of various machine learning mechanisms for discriminating OMPs such as: Genetic Programming, K-nearest Neighbor, and Fuzzy K-nearest Neighbor (Fuzzy K-NN) in conjunction with discrete methods such as: Amino acid composition, Amphiphilic Pseudo amino acid composition, Split amino acid composition (SAAC), and hybrid versions of these methods. The performance of the classifiers is evaluated by two datasets using 5-fold crossvalidation. After the simulation, we have observed that Fuzzy K-NN using SAAC based-features makes it quite effective in discriminating OMPs. Fuzzy K-NN achieves the highest success rates of 99.00% accuracy for discriminating OMPs from non-OMPs and 98.77% and 98.28% accuracies from α-helix membrane and globular proteins, respectively on dataset1. While on dataset2, Fuzzy K-NN achieves 99.55%, 99.90%, and 99.81% accuracies for discriminating OMPs from non- OMPs, α-helix membrane, and globular proteins, respectively. It is observed that the classification performance of our proposed method is satisfactory and is better than the existing methods. Thus, it might be an effective tool for high throughput innovation of OMPs.  相似文献   

3.
The outer membrane proteins (OMPs) are β-barrel membrane proteins that performed lots of biology functions. The discriminating OMPs from other non-OMPs is a very important task for understanding some biochemical process. In this study, a method that combines increment of diversity with modified Mahalanobis Discriminant, called IDQD, is presented to predict 208 OMPs, 206 transmembrane helical proteins (TMHPs) and 673 globular proteins (GPs) by using Chou's pseudo amino acid compositions as parameters. The overall accuracy of jackknife cross-validation is 93.2% and 96.1%, respectively, for three datasets (OMPs, TMHPs and GPs) and two datasets (OMPs and non-OMPs). These predicted results suggest that the method can be effectively applied to discriminate OMPs, TMHPs and GPs. And it also indicates that the pseudo amino acid composition can better reflect the core feature of membrane proteins than the classical amino acid composition.  相似文献   

4.
Yan C  Hu J  Wang Y 《Amino acids》2008,35(1):65-73
Identification of outer membrane proteins (OMPs) from genome is an important task. This paper presents a k-nearest neighbor (K-NN) method for discriminating outer membrane proteins (OMPs). The method makes predictions based on a weighted Euclidean distance that is computed from residue composition. The method achieves 89.1% accuracy with 0.668 MCC (Matthews correlation coefficient) in discriminating OMPs and non-OMPs. The performance of the method is improved by including homologous information into the calculation of residue composition. The final method achieves an accuracy of 96.1%, with 0.873 MCC, 87.5% sensitivity, and 98.2% specificity. Comparisons with multiple recently published methods show that the method proposed in this study outperforms the others.  相似文献   

5.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

6.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

7.
Gromiha MM  Suwa M 《Proteins》2006,63(4):1031-1037
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important task both for identifying OMPs from genomic sequences and for the successful prediction of their secondary and tertiary structures. In this work, we have analyzed the performance of different methods, based on Bayes rules, logistic functions, neural networks, support vector machines, decision trees, etc. for discriminating OMPs. We found that most of the machine learning techniques discriminate OMPs with similar accuracy. The neural network-based method could discriminate the OMPs from other proteins [globular/transmembrane helical (TMH)] at the fivefold cross-validation accuracy of 91.0% in a dataset of 1,088 proteins. The accuracy of discriminating globular proteins is 88.8% and that of TMH proteins is 93.7%. Further, the neural network method is tested with globular proteins belonging to 30 different folding types and it could successfully exclude 95% of the considered proteins. The proteins with SAM domain such as knottins, rubredoxin, and thioredoxin folds are eliminated with 100% accuracy. These accuracy levels are comparable to or better than other methods in the literature. We suggest that this method could be effectively used to discriminate OMPs and for detecting OMPs in genomic sequences.  相似文献   

8.
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important problem for predicting their secondary and tertiary structures and detecting outer membrane proteins from genomic sequences as well. In this work, we have systematically analyzed the distribution of amino acid residues in the sequences of globular and outer membrane proteins with several motifs, such as A*B, A**B, etc. We observed that the motifs E*L, A*K and L*E occur frequently in globular proteins while S*S, N*S and R*D predominantly occur in OMPs. We have devised a statistical method based on frequently occurring motifs in globular and OMPs and obtained an accuracy of 96% and 82% for correctly identifying OMPs and excluding globular proteins, respectively. Further, we noticed that the motifs of transmembrane helical (TMH) proteins are different from that of OMPs. While I*A, I*L and L*I prefer in TMH proteins S*S, N*S and N*N predominantly occur in OMPs. The information about the occurrence of A*B motifs in TMH and OMPs could discriminate them with an accuracy of 80% for excluding OMPs and 100% for identifying OMPs. The influence of protein size and structural class for discrimination is discussed.  相似文献   

9.
Discrimination of outer membrane proteins using support vector machines   总被引:3,自引:0,他引:3  
MOTIVATION: Discriminating outer membrane proteins from other folding types of globular and membrane proteins is an important task both for dissecting outer membrane proteins (OMPs) from genomic sequences and for the successful prediction of their secondary and tertiary structures. RESULTS: We have developed a method based on support vector machines using amino acid composition and residue pair information. Our approach with amino acid composition has correctly predicted the OMPs with a cross-validated accuracy of 94% in a set of 208 proteins. Further, this method has successfully excluded 633 of 673 globular proteins and 191 of 206 alpha-helical membrane proteins. We obtained an overall accuracy of 92% for correctly picking up the OMPs from a dataset of 1087 proteins belonging to all different types of globular and membrane proteins. Furthermore, residue pair information improved the accuracy from 92 to 94%. This accuracy of discriminating OMPs is higher than that of other methods in the literature, which could be used for dissecting OMPs from genomic sequences. AVAILABILITY: Discrimination results are available at http://tmbeta-svm.cbrc.jp.  相似文献   

10.
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important task both for identifying outer membrane proteins from genomic sequences and for the successful prediction of their secondary and tertiary structures. In this work, we have analyzed the influence of physico-chemical, energetic and conformational properties of amino acid residues for discriminating outer membrane proteins using different machine learning algorithms, such as, Bayes rules, Logistic functions, Neural networks, Support vector machines, Decision trees, etc. We observed that most of the properties have discriminated the OMPs with similar accuracy. The neural network method with the property, free energy change could discriminate the OMPs from other folding types of globular and membrane proteins at the 5-fold cross-validation accuracy of 94.4% in a dataset of 1,088 proteins, which is better than that obtained with amino acid composition. The accuracy of discriminating globular proteins is 94.3% and that of transmembrane helical (TMH) proteins is 91.8%. Further, the neural network method is tested with globular proteins belonging to 30 major folding types and it could successfully exclude 99.4% of the considered 1612 non-redundant proteins. These accuracy levels are comparable to or better than other methods in the literature. We suggest that this method could be effectively used to discriminate OMPs and for detecting OMPs in genomic sequences.  相似文献   

11.

Background  

Outer membrane proteins (OMPs) are frequently found in the outer membranes of gram-negative bacteria, mitochondria and chloroplasts and have been found to play diverse functional roles. Computational discrimination of OMPs from globular proteins and other types of membrane proteins is helpful to accelerate new genome annotation and drug discovery.  相似文献   

12.
Algorithms are suggested for identifying α-helical and β-structural regions in native globular proteins. α-Helical and β-structural regions are predicted, with accuracy of ~80 and ~85% respectively, for 25 proteins, the three-dimensional structures of which have been determined by X-ray diffraction crystallography. Secondary structure is predicted in 25 proteins with unknown three-dimensional structure.  相似文献   

13.
Integral membrane proteins (of the α-helical class) are of central importance in a wide variety of vital cellular functions. Despite considerable effort on methods to predict the location of the helices, little attention has been directed toward developing an automatic method to pack the helices together. In principle, the prediction of membrane proteins should be easier than the prediction of globular proteins: there is only one type of secondary structure and all helices pack with a common alignment across the membrane. This allows all possible structures to be represented on a simple lattice and exhaustively enumerated. Prediction success lies not in generating many possible folds but in recognizing which corresponds to the native. Our evaluation of each fold is based on how well the exposed surface predicted from a multiple sequence alignment fits its allocated position. Just as exposure to solvent in globular proteins can be predicted from sequence variation, so exposure to lipid can be recognized by variable-hydrophobic (variphobic) positions. Application to both bacteriorhodopsin and the eukaryotic rhodopsin/opsin families revealed that the angular size of the lipid-exposed faces must be predicted accurately to allow selection of the correct fold. With the inherent uncertainties in helix prediction and parameter choice, this accuracy could not be guaranteed but the correct fold was typically found in the top six candidates. Our method provides the first completely automatic method that can proceed from a scan of the protein sequence databanks to a predicted three-dimensional structure with no intervention required from the investigator. Within the limited domain of the seven helix bundle proteins, a good chance can be given of selecting the correct structure. However, the limited number of sequences available with a corresponding known structure makes further characterization of the method difficult. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
MOTIVATION: Discriminating outer membrane proteins from other folding types of globular and membrane proteins is an important task both for identifying outer membrane proteins from genomic sequences and for the successful prediction of their secondary and tertiary structures. RESULTS: We have systematically analyzed the amino acid composition of globular proteins from different structural classes and outer membrane proteins. We found that the residues, Glu, His, Ile, Cys, Gln, Asn and Ser, show a significant difference between globular and outer membrane proteins. Based on this information, we have devised a statistical method for discriminating outer membrane proteins from other globular and membrane proteins. Our approach correctly picked up the outer membrane proteins with an accuracy of 89% for the training set of 337 proteins. On the other hand, our method has correctly excluded the globular proteins at an accuracy of 79% in a non-redundant dataset of 674 proteins. Furthermore, the present method is able to correctly exclude alpha-helical membrane proteins up to an accuracy of 80%. These accuracy levels are comparable to other methods in the literature, and this is a simple method, which could be used for dissecting outer membrane proteins from genomic sequences. The influence of protein size, structural class and specific residues for discrimination is discussed.  相似文献   

15.
The paper reveals the types of amino acid sequences of polypeptide chain regions of globular protein which form a regular (α or β) or irregular conformation in the native globule. The study was made taking into account general “architectural” principles of packing of polypeptide chains in globular proteins and considering the interactions of proteins with water molecules. An a priori theory is developed which permits the identification, in good agreement with experiment, of α-helical and β-structural regions in globular proteins from their primary structure.  相似文献   

16.
Outer membrane β-barrel proteins differ from α-helical inner membrane proteins in lipid environment, secondary structure, and the proposed processes of folding and insertion. It is reasonable to expect that outer membrane proteins may contain primary sequence information specific for their folding and insertion behavior. In previous work, a depth-dependent insertion potential, E(z) , was derived for α-helical inner membrane proteins. We have generated an equivalent potential for TM β-barrel proteins. The similarities and differences between these two potentials provide insight into unique aspects of the folding and insertion of β-barrel membrane proteins. This potential can predict orientation within the membrane and identify functional residues involved in intermolecular interactions.  相似文献   

17.
α-Helical membrane proteins fulfill many vital roles in all living cells and constitute the majority of drug targets. However, their relevance is in no way paralleled by our current understanding of their structures and functions. This is because membrane proteins present a number of experimental obstacles that are difficult to surmount by classical methods developed for water-soluble proteins. Moreover, membrane proteins are not only challenging on their very own but, when embedded in a biological membrane, also reside in an outstandingly complex milieu. These difficulties have fostered a “divide and conquer” approach, in which a membrane protein is dissected into shorter and easier-to-handle transmembrane (TM) peptides. Under suitable conditions, such peptides fold independently and retain many of the properties displayed in the context of the full-length parent protein.This contribution reviews some of the most notable insights into α-helical membrane proteins gleaned from experiments on protein-derived TM peptides. We recapitulate some peculiar properties of lipid bilayers that render them such a complex and unique environment and discuss generic features pertaining to hydrophobic peptides derived from α-helical membrane proteins. The main part of the review is devoted to a critical discussion of particularly interesting examples of TM peptides studied in membrane-mimetic systems of increasing complexity: isotropic solvents, detergent micelles, lipid bilayers, and biological membranes. The unifying theme is to explore to what extent TM peptides in combination with different membrane-mimetic systems can aid in advancing our knowledge and comprehension of α-helical membrane proteins as well as in developing new pharmacological tools.  相似文献   

18.
The geometrical distortion of the α-helical structure of the globular proteins sperm-whale myoglobin, bacteriophage T4 lysozyme and hen egg-white lysozyme have been studied by means of deuterium exchange in solution. It was examined with the use of infrared spectroscopy in the region of the amide A band. The parameters of this band are known to be dependent on the length and geometry of the peptide hydrogen bond. In this way an estimation of the structural heterogeneity of the polypeptide backbone of the protein molecule has been achieved by studying the half-width of the amide A band during successive deuteration of the protein in heavy water solution. For all the proteins studied the peptide groups with broad amide A bands were exchanged at the first stage. These groups have been assigned as belonging to the unordered form of the molecule. The α-helical fragments were assigned to have smaller values of half-widths of the amide A band, and these were exchanged at the second stage. From these data α-helical fragments were shown to be characterized by a set of geometrical distortions. The results obtained also disclose a correlation between the degree of geometrical distortion of α-helical structure in the protein molecule and the dynamic accessibility of their peptide groups to a water molecule.  相似文献   

19.
A suite of FORTRAN programs, PREF, is described for calculating preference functions from the data base of known protein structures and for comparing smoothed profiles of sequence-dependent preferences in proteins of unknown structure. Amino acid preferences for a secondary structure are considered as functions of a sequence environment. Sequence environment of amino acid residue in a protein is defined as an average over some physical, chemical, or statistical property of its primary structure neighbors. The frequency distribution of sequence environments in the data base of soluble protein structures is approximately normal for each amino acid type of known secondary conformation. An analytical expression for the dependence of preferences on sequence environment is obtained after each frequency distribution is replaced by corresponding Gaussian function. The preference for the α-helical conformation increases for each amino acid type with the increase of sequence environment of buried solvent-accessible surface areas. We show that a set of preference functions based on buried surface area is useful for predicting folding motifs in α-class proteins and in integral membrane proteins. The prediction accuracy for helical residues is 79% for 5 integral membrane proteins and 74% for 11 α-class soluble proteins. Most residues found in transmembrane segments of membrane proteins with known α-helical structure are predicted to be indeed in the helical conformation because of very high middle helix preferences. Both extramembrane and transmembrane helices in the photosynthetic reaction center M and L subunits are correctly predicted. We point out in the discussion that our method of conformational preference functions can identify what physical properties of the amino acids are important in the formation of particular secondary structure elements. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Discriminating outer membrane proteins for globular proteins (GPs) and other types of membrane proteins from genomic sequences is an important and hot topic. In this paper, a measure based on information discrepancy is proposed and applied to the discrimination of outer membrane proteins. It differs from previous methods which are based on amino acid composition. Our approach focuses on the comparison of subsequence distributions and takes into account the effect of residue order in protein primary structures. As a result, the new approach outperforms all previous methods on the same benchmark datasets. In particular, we show that the proposed approach has correctly identified the outer membrane proteins at an accuracy of 99% for the training set of 337 proteins and has correctly excluded the GPs at an accuracy of 86% in a non-redundant dataset of 668 proteins. Furthermore, this method is able to correctly exclude alpha-helical membrane proteins at an accuracy of 100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号