共查询到20条相似文献,搜索用时 0 毫秒
1.
Rubredoxins are the simplest type of iron-sulphur proteins and in recent years they have been used as model systems in protein folding and stability studies, especially the proteins from thermophilic sources. Here, we report our studies on the rubredoxin from the hyperthermophile Methanococcus jannaschii (T opt = 85 degrees C), which was investigated in respect to its thermal unfolding kinetics by temperature jump experiments. Different spectroscopic probes were used to monitor distinct structural protein features during the thermal transition: the integrity of the iron-sulphur centre was monitored by visible absorption spectroscopy, whereas tertiary structure was followed by intrinsic tryptophan fluorescence and exposure of protein hydrophobic patches was sensed by 1-anilinonaphthalene-8-sulphonate fluorescence. The studies were performed at acidic pH conditions in which any stabilising contributions from salt bridges are annulled due to protonation of protein side chain groups. In these conditions, M. jannaschii rubredoxin assumes a native-like, albeit more flexible and open conformation, as indicated by a red shift in the tryptophan emission maximum and 1-anilinonaphthalene-8-sulphonate binding. Temperature jumps were monitored by the three distinct techniques and showed that the protein undergoes thermal denaturation via a simple two step mechanism, as loss of tertiary structure, hydrophobic collapse, and disintegration of the iron-sulphur centre are concomitant processes. The proposed mechanism is framed with the multiphasic one proposed for Pyrococcus furiosus rubredoxin, showing that a common thermal unfolding mechanism is not observed between these two closely related thermophilic rubredoxins. 相似文献
2.
The binding of monovalent (Na+, K+) and divalent (Ca2+, Mg2+) cations to bovine alpha-lactalbumin at 20 and 37 degrees C has been studied by means of intrinsic protein fluorescence. The values of apparent binding constants for these ions obtained at 37 degrees C are about one order of magnitude lower than those measured at 20 degrees C. Urea and alkali (pH greater than 10) induce unfolding transitions which involve stable partially unfolded intermediates for all metal ion-bound forms of alpha-lactalbumin. Heating induces similar partially unfolded states. Nevertheless, the partially unfolded states induced by heating, urea, alkaline or acidic treatments are somewhat different in their tryptophan residue environment properties. The results have been interpreted in terms of a simple scheme of equilibria between metal-free and metal-bound forms in their native, partially unfolded and unfolded states. The scheme provides an approach to the quantitative interpretation of any transition equilibrium shift induced by a low molecular mass species able to be bound by a protein. 相似文献
3.
To examine the factors involved with nucleosome stability, we reconstituted nonacetylated particles containing various lengths (192, 162, and 152 base pairs) of DNA onto the Lytechinus variegatus nucleosome positioning sequence in the absence of linker histone. We characterized the particles and examined their thermal stability. DNA of less than chromatosome length (168 base pairs) produces particles with altered denaturation profiles, possibly caused by histone rearrangement in those core-like particles. We also examined the effects of tetra-acetylation of histone H4 on the thermal stability of reconstituted nucleosome particles. Tetra-acetylation of H4 reduces the nucleosome thermal stability by 0.8 degrees C as compared with nonacetylated particles. This difference is close to values published comparing bulk nonacetylated nucleosomes and core particles to ones enriched for core histone acetylation, suggesting that H4 acetylation has a dominant effect on nucleosome particle energetics. 相似文献
4.
Characteristics of thermal denaturation of pea legumin and a product of its limited proteolysis with trypsin – legumin-T, in a wide range of NaCl concentrations have bean measured by means of differential scanning microcalorimetry. By the increase of NaCl concentration, the number of cooperative units (domains) increases from 1 per one polypeptide chain to 2 for legumin and 1.8 for legumin-T. Deconvolution of denaturation peaks have revealed up to three peaks, which were ascribed to the dissociation of protein macromolecules to subunits and the unfolding of - and β-polypeptide chains. The analysis of experimental data based on some assumptions showed that the splitting of C-termini of -chains, which are not constituents of cooperative domains, in the course of limited trypsinolysis results in destabilization of the quaternary structure of legumin and loosening of -chains, as well as decrease of the temperatures of their maximum stability. 相似文献
5.
The polypeptide inhibitor of the ribonuclease barnase, barstar, has two cysteine residues in positions 40 and 82. These have been proposed to form a disulfide bridge leading to an increase in stability without changing the inhibitory activity of the protein. Barstar and a mutant (E80A) were oxidized in vitro and the biochemical and physico-chemical properties of the oxidized monomers were analysed. The oxidized proteins show no inhibition of barnase using a plate assay and are significantly destabilized. CD spectra indicate a loss of secondary structure. The amino acid substitution E80 → A stabilizes the oxidized barstar to about the same extent as it does the reduced protein, indicating, however, that the helical region which it is in is intact. 相似文献
6.
The genomic DNAs of 1 1 species of percid fishes representing the five recognized North American genera are characterized using data from thermal denaturation assays. Base compositions were estimated from the transitional melting temperature of native and sonicated DNA and expressed as per cent guanine-cytosine (%GC) values. Among genera, %GC values for native DNAs (c, 23,000 base pairs in length) range between 38.3% GC for yellow perch, Perca flavescens (Mitchill), to 43.2% GC for sauger, Stizostedion cunadense (Smith). Significant variation in %GC values was observed among surveyed genera of the subfamily Percinae, which include Perca, Percinu, Etheostoma and Ammocrypfa . Melting profiles were generated for each species, and distinct GC rich regions were identified within the genomes of walleye, Sfizostcdion virreum (Mitchill) and Etheostoma spp. Compositional heterogeneity (CH) and asymmetry values were calculated from melting profile data. Patterns of variation in genomic characters differed among the genera surveyed. Members of the speciose genus Etheostomu showed relatively little variation in genomic characters, whereas Stizosredion exhibited significant interspecific variation. 相似文献
7.
A calorimetric study of the thermal denaturation of bovine serum albumin, RNAase and catalase in concentrated solutions (crystals) has been carried out. The results obtained for RNAase studied within the pH range 2.5-8.5 show that for concentrated solutions there is an interval of pH where, on cooling of the solution which had undergone denaturation, its renaturation is observed. In the case of concentrated and dilute solutions of RNAase these intervals coincide. The study of RNAase under such conditions at various heating rates shows that there is a range of rates in which the process of denaturation of concentrated solutions can be considered as reversible. The dependences of Td and Hd on pH and concentration of solutions have been determined. The denaturation enthalpy of concentrated solutions like in dilute ones, has been found to be independent of the pH of solutions, and the experimentally registered change has been proved to be the result of its dependence on temperature. A new method of determination of protein denaturation enthalpy under the conditions of intensive molecule aggregation is suggested. The forms of irreversibility as appearing in the calorimetric experiment were determined by comparing reversible and irreversible denaturation under continuous and step-heating regimes. It is shown that the decrease in Tmax and the narrowing of the heat absorption peak in the case of decreasing heating rates of protein solutions, observed under certain environmental conditions, results from the irreversibility of the denaturation process. 相似文献
8.
The unfolding process of human serum albumin between pH 5.4 and 9.9 was studied by chemical and thermal denaturations. The experimental results showed that there is no correlation between the stability of albumin at different pH values determined by both methods. The free energy change of unfolding versus concentration of guanidine showed a close dependence on the pH, suggesting that the variation of the electrical charge of albumin influences the final state of the unfolded form of the protein. Spectroscopic techniques, such as native fluorescence of the protein and circular dichroism, demonstrated that the unfolded state of the protein obtained from both methods possesses a different helical content. The solvophobic effect and the entropy of the chains have no influence on the final unfolding state when the protein is unfolded by thermal treatment, while, when the protein is unfolded by chemical denaturants, both effects depend on the medium pH. The results indicate that guanidine and urea interact with albumin by electrostatic forces, yielding a randomly coiled conformation in its unfolded state, while thermal denaturation produces a molten globule state and the aggregation of the protein; therefore, both methods yield different structurally unfolded states of the albumin. 相似文献
9.
Size exclusion chromatography (SEC) coupled with online light scattering, viscometry, refractometry, and UV-visible spectroscopy provides a very powerful tool for studying protein size, shape, and aggregation. This technique can be used to determine the molecular weight of the component peaks independent of the retention times in the SEC column and simultaneously measure the hydrodynamic radius and polydispersity of the protein. We applied this technology by coupling an Agilent Chemstation high-performance liquid chromatography system with a diode array UV-visible detector and a Viscotek 300 EZ Pro triple detector (combination of a light scattering detector, refractometer, and differential pressure viscometer) to characterize and compare the molecular properties of a number of monoclonal antibodies. Our studies reveal that different monoclonal immunoglobulin Gs (IgGs) and chimeric IgGs show slightly different retention times and therefore different molecular weights in gel filtration analysis. However, when they are analyzed by light scattering, refractometry, and viscometry, different IgGs have comparable molecular weight, molecular homogeneity (polydispersity), and size. Gel filtration coupled with UV or refractive index detection suggests that antibodies purified and formulated for preclinical and clinical development are more than 95% monomer with little or no detectable soluble aggregates. Light scattering measurements showed the presence of trace amounts of soluble aggregate in all the IgG preparations. The different IgG molecules showed different susceptibility to heat and pH. One of the murine antibodies was considerably less stable than the others at 55 degrees C. The application of this powerful technology for the characterization of monoclonal antibodies of therapeutic potential is discussed. 相似文献
10.
Summary The above authors claim to have examined critically the thermal polycondensation of amino acids –as a possible prebiotic path of chemical evolution of life–. Some of the flaws in their premises and interpretations are discussed here. 相似文献
11.
We report on the response of reaction center (RC) from Rhodobacter sphaeroides (an archetype of membrane proteins) to the exposure at high temperature. The RCs have been solubilized in aqueous solution of the detergent N, N-dimethyldodecylamine- N-oxide (LDAO). Changes in the protein conformation have been probed by monitoring the variation in the absorbance of the bacteriochlorine cofactors and modification in the efficiency of energy transfer from tryptophans to cofactors and among the cofactors (through fluorescence measurements). The RC aggregation taking place at high temperature has been investigated by means of dynamic light scattering. Two experimental protocols have been used: (i) isothermal kinetics, in which the time evolution of RC after a sudden increase of the temperature is probed, and (ii) T-scans, in which the RCs are heated at constant rate. The analysis of the results coming from both the experiments indicates that the minimal kinetic scheme requires an equilibrium step and an irreversible process. The irreversible step is characterized by a activation energy of 205 ± 14 kJ/mol and is independent from the detergent concentration. Since the temperature dependence of the aggregation rate was found to obey to the same law, the aggregation process is unfolding-limited. On the other hand, the equilibrium process between the native and a partially unfolded conformations was found to be strongly dependent on the detergent concentration. Increasing the LDAO content from 0.025 to 0.5 wt.% decreases the melting temperature from 49 to 42 °C. This corresponds to a sizeable (22 kJ/mol at 25 °C) destabilization of the native conformation induced by the detergent. The nature of the aggregates formed by the denatured RCs depends on the temperature. For temperature below 60 °C compact aggregates are formed while at 60 °C the clusters are less dense with a scaling relation between mass and size close to that expected for diffusion-limited aggregation. The aggregate final sizes formed at different temperatures indicate the presence of an even number of proteins suggesting that these clusters are formed by aggregation of dimers. 相似文献
12.
The conformational transitions starting with the native protein, passing the molten globule state and finally approaching the unfolded state of proteins was investigated for bovine carbonic anhydrase B (BCAB) and human -lactalbumin (-HLA) by means of fluorescence decay time measurements of the dye 8-anilinonaphthalene-1-sulphonic acid (8-ANS). Stepwise denaturation was realized by using the denaturant guanidinium chloride (GdmCl). It was shown that 8-ANS bound with protein yields a double-exponential fluorescence decay, where both decay times considerably exceed the decay time of free 8-ANS in water. This finding reflects the hydrophobic environment of the dye molecules attached to the proteins. The fluorescence lifetime of the short-time component is affected by protein association and can be effectively quenched by acrylamide, indicating that 8-ANS molecules preferentially bind at the protein surface. The fluorescence lifetime of the long-time component is independent of the protein and acrylamide concentration and may be related to protein-embedded dye molecules. Changes of the long lifetime component upon GdmCl-induced denaturation and unfolding of BCAB and -HLA correlate well with overall changes of the protein conformation. The transition from native protein to the molten globule state is accompanied by an increase of the number of protein-embedded 8-ANS molecules, while the number of dye molecules located at the protein surface decreases. For the transition from the molten globule to the unfolded state was the opposite behaviour observed. 相似文献
13.
We have developed a series of plasmid vectors for the soluble expression and subsequent purification of recombinant proteins that have historically proven to be extremely difficult to purify from Escherichia coli. Instead of dramatically overproducing the target protein, it is expressed at a low basal level that facilitates the correct folding of the recombinant protein and increases its solubility. Highly active recombinant proteins that are traditionally difficult to purify are readily purified using standard affinity tags and conventional chromatography. To demonstrate the utility of these vectors, we have expressed and purified full-length human DNA polymerases η, ι, and ν from E. coli and show that the purified DNA polymerases are catalytically active in vitro. 相似文献
14.
A systematic study concerning the effect of aqueous solution of alcohols and polyols with four carbon atoms on β-lactoglobulin stability is presented. The protein was chosen due to its functional properties and applications in food and pharmaceutical industries and because its structure and properties in aqueous solution have been widely described. The alcohols having a four carbon chain were selected to examine the effect of the gradual increase in the number of OH groups on protein stability. Protein thermal stability in water, buffers and dilute aqueous solutions of 1-butanol, 1,2-butanediol, 1,2,4-butanetriol and 1,2,3,4-butanetetrol was evaluated by fluorescence spectroscopy. The results were used to determine the temperature range in which the unfolding process is reversible and the protein denaturation temperature in acetate buffer pH 5.5 and in the aqueous mixed solvents. Thermodynamic results show that alcohol denaturating effect diminishes gradually as the number of OH groups increase. 相似文献
15.
Effect of recombinant chicken small heat shock protein with molecular mass 24 kDa (Hsp24) and recombinant human small heat shock protein with molecular mass 27 kDa (Hsp27) on the heat-induced denaturation and aggregation of skeletal F-actin was analyzed by means of differential scanning calorimetry and light scattering. All small heat shock proteins did not affect thermal unfolding of F-actin measured by differential scanning calorimetry, but effectively prevented aggregation of thermally denatured actin. Small heat shock protein formed stable complexes with denatured (but not with intact) F-actin. The size of these highly soluble complexes was smaller than the size of intact F-actin filaments. It is supposed that protective effect of small heat shock proteins on the cytoskeleton is at least partly due to prevention of aggregation of denatured actin. 相似文献
16.
The PAAD domain is a conserved domain recently identified in more than 35 human proteins that are involved in apoptosis and inflammatory signaling pathways. Structural studies have confirmed that this domain belongs to the death domain superfamily which includes PAAD/CARD/DED/DD families. Recently, the 3D structures determined by NMR of NALP1 and ASC PAAD domain, members of the PAAD family, have shown that it is composed of a 6 helix bundle as with other death domain family members. However, helix-3 in the solved structures is unordered in solution. In this study we compare the thermodynamic, folding and stability properties of different members of the PAAD and CARD families and investigate structural conformational changes induced by the helix inducers trifluoroethanol and SDS on the PAAD domain of IFI16 and on the CARD domain of RAIDD. We show that inside the PAAD and CARD families, members have similar thermodynamic properties, however, the DeltaG of folding for PAAD and CARD members are, respectively, -1.4 and -5.5 kcal mol(-1). This difference is attributed to less alpha helical content for PAAD due to the unfolding of helix-3 that lowers bonded energy and increases disorder when compared to CARD members. Despite identical fold between PAAD and CARD families but limited sequence identity, there are striking differences in the thermodynamics of both families. 相似文献
17.
We applied different methods, such as turbidity measurements, dynamic light scattering, differential scanning calorimetry and co-sedimentation assay, to analyze the interaction of small heat shock protein Hsp27 with isolated myosin head (myosin subfragment 1, S1) under heat-stress conditions. Upon heating at 43 degrees C, Hsp27 effectively suppresses S1 aggregation, and this effect is enhanced by mutations mimicking Hsp27 phosphorylation. However, Hsp27 was unable to prevent thermal unfolding of myosin heads and to maintain their ATPase activity under heat-shock conditions. 相似文献
18.
Fourier transform infrared (FTIR) spectroscopy is used to compare the thermally induced conformational changes in horse,
bovine and tuna ferricytochromes c in 50 mM phosphate/0.2 M KCl. Thermal titration in D 2O at pD 7.0 of the amide II intensity of the buried peptide NH protons reveals tertiary structural transitions at 54 °C in horse and at 57 °C in bovine c. These transitions, which occur well before loss of secondary structure, are associated with the alkaline isomerization involving
Met80 heme-ligand exchange. In tuna c, the amide-II-monitored alkaline isomerization occurs at 35 °C, followed by a second amide II transition at 50 °C revealing
a hitherto unreported conformational change in this cytochrome. Amide II transitions at 50 °C (tuna) and 54 °C (horse) are
also observed during the thermal titration of the CN –-ligated cytochromes (where CN – displaces the Met80 ligand), but a well-defined 35 °C amide II transition is absent from the titration curve of the CN –adduct of tuna c. The different mechanisms suggested by the FTIR data for the alkaline isomerization of tuna and the mammalian cytochromes c are discussed. After the alkaline isomerization, loss of secondary structure and protein aggregation occur within a 5 °C
range with T
m values at 74 °C (bovine c), 70 °C (horse c) and 65 °C (tuna c), as monitored by changes in the amide I′ bands. The FTIR spectra were also used to compare the secondary structures of the
ferricytochromes c at 25 °C. Curve fitting of the amide I (H 2O) and amide I′ (D 2O) bands reveals essentially identical secondary structure in horse and bovine c, whereas splitting of the α-helical absorption of tuna c indicates the presence of less-stable helical structures. CN – adduct formation results in no FTIR-detectable changes in the secondary structures of either tuna or horse c, indicating that Met80 ligation does not influence the secondary structural elements in these cytochromes. The data provided
here demonstrate for the first time that the selective thermal titration of the amide II intensity of buried peptide NH protons in D 2O is a powerful tool in protein conformational analysis.
Received: 1 April 1999 / Accepted: 24 August 1999 相似文献
19.
Understanding protein aggregation may hold important clues to understanding what goes wrong with protein folding in neurodegenerative disorders and in bioreactors in which proteins are overexpressed. Unfortunately, aggregates tend to be intractable to most standard methods of biochemical investigation. Thus, relatively little is even now known about the micro- and macro-structural features of aggregates. To gain insights into the thermal aggregation of a model globular protein [bovine carbonic anhydrase (BCA)], we have used spectrofluorimetry to examine the binding of a hydrophobic dye, 8-anilinonaphthalene sulfonate (ANS), to hydrophobic clusters on the protein's surface both before and after heat-induced aggregation and upon cooling. Whereas native BCA shows no surface hydrophobicity, thermally aggregated BCA displays significant hydrophobicity both in the heated state and upon cooling. The timing of the addition of ANS in the course of aggregation makes no net difference to the ANS bound; we argue that this suggests that aggregates are essentially porous. Cooling of aggregates results in a dramatic, fully reversible increase in ANS binding that cannot be explained by the temperature dependence of fluorescence quantum yield alone; we argue that the enhancement of fluorescence upon cooling indicates possible structural consolidation of unfolded regions within aggregates (akin to refolding), with the required structural reorganization being facilitated by porosity. Finally, implications of porosity in aggregates are discussed, in particular, for the possible immobilization of enzymes through fusion with aggregation-prone protein domains. 相似文献
20.
The structure of porcine pepsin crystallized in the presence of dimethyl sulphoxide has been analysed by X-ray crystallography to obtain insights into the structural events that occur at the onset of chemical denaturation of proteins. The results show that one dimethyl sulphoxide molecule occupies a site on the surface of pepsin interacting with two of its residues. An increase in the average temperature factor of pepsin in the presence of dimethyl sulphoxide has been observed indicating protein destabilization induced by the denaturant. Significant increase in the temperature factor and weakening of the electron density have been observed for the catalytic water molecule located between the active aspartates. The conformation of pepsin remains unchanged in the crystal structure. However, the enzyme assay and circular dichroism studies indicate that dimethyl sulphoxide causes a slight change in the secondary structure and complete loss of activity of pepsin in solution. 相似文献
|