首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described that allows the sequencing of polymerase chain reaction (PCR) products containing CACA repeats. The method was tested using a DNA polymorphism that exists at the 3' end of the dystrophin gene. This polymorphism consists of a variation in the length of a CACA dinucleotide repeat. Four alleles from a total of 16 individuals were sequenced at this locus after the DNA sequence had been amplified by the PCR. Five examples of each of the common alleles were sequenced. For each allele all five sequences were the same. The only example of a rare allele was also sequenced. The PCR products of DNA sequences containing dinucleotide repeats consist of a number of bands differing by 2 bp below the most intense main band. Previously, direct sequencing of the PCR products lead to ambiguities and smearing at and above the CACA repeat. In this paper, the main PCR band was cut out of a sequencing gel and directly sequenced to give a clear DNA sequence. Our results indicate that for a particular allele, all individuals had exactly the same DNA sequence. This implies that with the appropriate choice of oligonucleotide primers, polymorphisms could be detected without electrophoresis.  相似文献   

2.
Targeted sequence enrichment enables better identification of genetic variation by providing increased sequencing coverage for genomic regions of interest. Here, we report the development of a new target enrichment technology that is highly differentiated from other approaches currently in use. Our method, MESA (Microfluidic droplet Enrichment for Sequence Analysis), isolates genomic DNA fragments in microfluidic droplets and performs TaqMan PCR reactions to identify droplets containing a desired target sequence. The TaqMan positive droplets are subsequently recovered via dielectrophoretic sorting, and the TaqMan amplicons are removed enzymatically prior to sequencing. We demonstrated the utility of this approach by generating an average 31.6-fold sequence enrichment across 250 kb of targeted genomic DNA from five unique genomic loci. Significantly, this enrichment enabled a more comprehensive identification of genetic polymorphisms within the targeted loci. MESA requires low amounts of input DNA, minimal prior locus sequence information and enriches the target region without PCR bias or artifacts. These features make it well suited for the study of genetic variation in a number of research and diagnostic applications.  相似文献   

3.
Abstract

The in vitro replication of DNA, principally using the polymerase chain reaction (PCR), permits the amplification of defined sequences of DNA. By exponentially amplifying a target sequence, PCR significantly enhances the probability of detecting target gene sequences in complex mixtures of DNA. It also facilitates the cloning and sequencing of genes. Amplification of DNA by PCR and other newly developed methods has been applied in many areas of biological research, including molecular biology, biotechnology, and medicine, permitting studies that were not possible before. Nucleic acid amplification has added a new and revolutionary dimension to molecular biology. This review examines PCR and other in vitro nucleic acid amplification methodologies—examining the critical parameters and variations and their widespread applications—giving the strengths and limitations of these methodologies.  相似文献   

4.
We describe a fluorescence-based directed termination PCR (fluorescent DT–PCR) that allows accurate determination of actual sequence changes without dideoxy DNA sequencing. This is achieved using near infrared dye-labeled primers and performing two PCR reactions under low and unbalanced dNTP concentrations. Visualization of resulting termination fragments is accomplished with a dual dye Li-cor DNA sequencer. As each DT–PCR reaction generates two sets of terminating fragments, a pair of complementary reactions with limiting dATP and dCTP collectively provide information on the entire sequence of a target DNA, allowing an accurate determination of any base change. Blind analysis of 78 mutants of the supF reporter gene using fluorescent DT–PCR not only correctly determined the nature and position of all types of substitution mutations in the supF gene, but also allowed rapid scanning of the signature sequences among identical mutations. The method provides simplicity in the generation of terminating fragments and 100% accuracy in mutation characterization. Fluorescent DT–PCR was successfully used to generate a UV-induced spectrum of mutations in the supF gene following replication on a single plate of human DNA repair-deficient cells. We anticipate that the automated DT–PCR method will serve as a cost-effective alternative to dideoxy sequencing in studies involving large-scale analysis for nucleotide sequence changes.  相似文献   

5.
Using antibodies directed against the amino-terminus of dystrophin, we identified a truncated protein in a Duchenne muscular dystrophy patient. Antibodies directed against the carboxy-terminus failed to identify any cross-reactive material, a result consistent with premature termination of dystrophin translation. The estimated molecular mass of 126 kDa predicted the approximate location of the mutation in the mRNA and in the gene. Sequencing of cloned PCR products from patient muscle cDNA revealed a nonsense mutation, which was confirmed by direct sequencing of amplified patient genomic DNA. The mutation, a G to T transversion, at position 3714 changes a glutamic acid codon to an Amber stop codon. Translation of mRNA containing this mutation would be expected to result in a truncated protein with a molecular mass of 133 kDa, in close agreement with the 126 kDa estimated by Western blot analysis. This is the first reported case of a point mutation in this very large human gene.  相似文献   

6.
Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods, and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures, rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-consuming, and expensive procedure. Here, we propose the base-calling with vocabulary (BCV) method that computationally deciphers Sanger chromatograms obtained from mixed DNA samples. The inputs to the BCV algorithm are a chromatogram and a dictionary of sequences that are similar to those we expect to obtain. We apply the base-calling function on a test dataset of chromatograms without ambiguous positions, as well as one with 3–14% sequence degeneracy. Furthermore, we use BCV to assemble a consensus sequence for an HIV genome fragment in a sample containing a mixture of viral DNA variants and to determine the positions of the indels. Finally, we detect drug-resistant Mycobacterium tuberculosis strains carrying frameshift mutations mixed with wild-type bacteria in the pncA gene, and roughly characterize bacterial communities in clinical samples by direct 16S rRNA sequencing.  相似文献   

7.
The discovery of RFLPs and their utilization as genetic markers has revolutionized research in human molecular genetics. However, only a fraction of the DNA sequence polymorphisms in the human genome affect the length of a restriction fragment and hence result in an RFLP. Polymorphisms that are not detected as RFLPs are typically passed over in the screening process though they represent a potentially important source of informative genetic markers. We have used a rapid method for the detection of naturally occurring DNA sequence variations that is based on enzymatic amplification and direct sequencing of genomic DNA. This approach can detect essentially all useful sequence variations within the region screened. We demonstrate the feasibility of the technique by applying it to the human retinoblastoma susceptibility locus. We screened 3,712 bp of genomic DNA from each of nine individuals and found four DNA sequence polymorphisms. At least one of these DNA sequence polymorphisms was informative in each of three families with hereditary retinoblastoma that were not informative with any of the known RFLPs at this locus. We believe that direct sequencing is a reasonable alternative to other methods of screening for DNA sequence polymorphisms and that it represents a step forward for obtaining informative markers at well-characterized loci that have been minimally informative in the past.  相似文献   

8.
Next generation pyrosequencing of high G + C content genomes still poses problems to automated sequencing and assembly processes which necessitates cost and time intensive manual work in order to finish such genomes completely. The sequencing of the high G + C actinomycete Actinoplanes sp. SE50/110 was performed with standard pyrosequencing technology (454 Life Sciences) and revealed a high number of gaps. The reasons for the introduction of gaps were analyzed on a previously known 41 kb long DNA reference sequence from Actinoplanes sp. SE50/110, hosting the acarbose biosynthesis gene cluster. Mapping of the sequencing results on the reference gene cluster sequence revealed a fragmentation into 30 contiguous sequences of different lengths. The gaps between these sequences were characterized by extremely low read coverage which strongly correlated with the G + C content in the gap regions in a negative manner. Furthermore, the gap-sequences contained strong stem-loop structures which hindered the amplification of these sequences during the emulsion PCR. Being significantly underrepresented or absent in the subsequent sequencing process, these sequences lead to weakly or uncovered genomic regions which forces the assembly algorithm to output multiple contiguous sequences instead of one finished genome. However, by applying a different pyrosequencing protocol, it was possible to sequence the complete acarbose biosynthesis gene cluster. The changes to the protocol include longer read length and addition of chemicals to the amplification chemistry, which reduces the self-annealing of DNA fragments during the amplification process and enables the complete reconstruction of high G + C content genomes without manual intervention.  相似文献   

9.
The provision of prenatal diagnosis requires the highest standards in laboratory practice to ensure an accurate result. In preimplantation genetic diagnosis protocols additionally have to address the need to achieve an accurate result from 1 to 2 cells within a limited time. Emerging protocols of "non-invasive" prenatal diagnosis, which are based on analysis of free fetal DNA in the circulation of the pregnant mother, also have to achieve a result from a limited quantity of fetal DNA against a high background of maternal free DNA. Real-time PCR uses fluorescent probes or dyes and dedicated instruments to monitor the accumulation of amplicons produced throughout the progress of a PCR reaction. Real-time PCR can be used for quantitative or qualitative evaluation of PCR products and is ideally suited for analysis of nucleotide sequence variations (point mutations) and gene dosage changes (locus deletions or insertions/duplications) that cause human monogenic diseases. Real-time PCR offers a means for more rapid and potentially higher throughput assays, without compromising accuracy and has several advantages over end-point PCR analysis, including the elimination of post-PCR processing steps and a wide dynamic range of detection with a high degree of sensitivity. This review will focus on real-time PCR protocols that are suitable for genotyping monogenic diseases with particular emphasis on applications to prenatal diagnosis, non-invasive prenatal diagnosis and preimplantation genetic diagnosis.  相似文献   

10.
Analysis of 22 deletion breakpoints in dystrophin intron 49   总被引:9,自引:0,他引:9  
Over 60% of Duchenne and Becker muscular dystrophies are caused by deletions spanning tens or hundreds of kilobases in the dystrophin gene. The molecular mechanisms underlying the loss of DNA at this genomic locus are not yet understood. By studying the distribution of deletion breakpoints at the genomic level, we have previously shown that intron 49 exhibits a higher relative density of breakpoints than most dystrophin introns. To determine whether the mechanisms leading to deletions in this intron preferentially involve specific sequence elements, we sublocalized 22 deletion endpoints along its length by a polymerase-chain-reaction-based approach and, in particular, analyzed the nucleotide sequences of five deletion junctions. Deletion breakpoints were homogeneously distributed throughout the intron length, and no extensive homology was observed between the sequences adjacent to each breakpoint. However, a short sequence able to curve the DNA molecule was found at or near three breakpoint junctions.  相似文献   

11.
Although pioneering sequencing projects have shed light on the boxer and poodle genomes, a number of challenges need to be met before the sequencing and annotation of the dog genome can be considered complete. Here, we present the DNA sequence of the Jindo dog genome, sequenced to 45-fold average coverage using Illumina massively parallel sequencing technology. A comparison of the sequence to the reference boxer genome led to the identification of 4 675 437 single nucleotide polymorphisms (SNPs, including 3 346 058 novel SNPs), 71 642 indels and 8131 structural variations. Of these, 339 non-synonymous SNPs and 3 indels are located within coding sequences (CDS). In particular, 3 non-synonymous SNPs and a 26-bp deletion occur in the TCOF1 locus, implying that the difference observed in cranial facial morphology between Jindo and boxer dogs might be influenced by those variations. Through the annotation of the Jindo olfactory receptor gene family, we found 2 unique olfactory receptor genes and 236 olfactory receptor genes harbouring non-synonymous homozygous SNPs that are likely to affect smelling capability. In addition, we determined the DNA sequence of the Jindo dog mitochondrial genome and identified Jindo dog-specific mtDNA genotypes. This Jindo genome data upgrade our understanding of dog genomic architecture and will be a very valuable resource for investigating not only dog genetics and genomics but also human and dog disease genetics and comparative genomics.  相似文献   

12.
Methods to measure the sequence diversity of polymerase chain reaction (PCR)-amplified DNA lack standards for use as assay calibrators and controls. Here we present a general and economical method for developing customizable DNA standards of known sequence diversity. Standards ranging from 1 to 25,000 sequences were generated by directional ligation of oligonucleotide “words” of standard length and GC content and then amplified by PCR. The sequence accuracy and diversity of the library were validated using AmpliCot analysis (DNA hybridization kinetics) and Illumina sequencing. The library has the following features: (i) pools containing tens of thousands of sequences can be generated from the ligation of relatively few commercially synthesized short oligonucleotides; (ii) each sequence differs from all others in the library at a minimum of three nucleotide positions, permitting discrimination between different sequences by either sequencing or hybridization; (iii) all sequences have identical length, GC content, and melting temperature; (iv) the identity of each standard can be verified by restriction digestion; and (v) once made, the ends of the library may be cleaved and replaced with sequences to match any PCR primer pair. These standards should greatly improve the accuracy and reproducibility of sequence diversity measurements.  相似文献   

13.
14.
Fluorescence-based sequencing is playing an increasingly important role in efforts to identify DNA polymorphisms and mutations of biological and medical interest. The application of this technology in generating the reference sequence of simple and complex genomes is also driving the development of new computer programs to automate base calling (Phred), sequence assembly (Phrap) and sequence assembly editing (Consed) in high throughput settings. In this report we describe a new computer program known as PolyPhred that automatically detects the presence of heterozygous single nucleotide substitutions by fluorescencebased sequencing of PCR products. Its operations are integrated with the use of the Phred, Phrap and Consed programs and together these tools generate a high throughput system for detecting DNA polymorphisms and mutations by large scale fluorescence-based resequencing. Analysis of sequences containing known DNA variants demonstrates that the accuracy of PolyPhred with single pass data is >99% when the sequences are generated with fluorescent dye-labeled primers and approximately 90% for those prepared with dye-labeled terminators.  相似文献   

15.
Sequencing small quantities of DNA is important for applications ranging from the assembly of uncultivable microbial genomes to the identification of cancer-associated mutations. To obtain sufficient quantities of DNA for sequencing, the small amount of starting material must be amplified significantly. However, existing methods often yield errors or non-uniform coverage, reducing sequencing data quality. Here, we describe digital droplet multiple displacement amplification, a method that enables massive amplification of low-input material while maintaining sequence accuracy and uniformity. The low-input material is compartmentalized as single molecules in millions of picoliter droplets. Because the molecules are isolated in compartments, they amplify to saturation without competing for resources; this yields uniform representation of all sequences in the final product and, in turn, enhances the quality of the sequence data. We demonstrate the ability to uniformly amplify the genomes of single Escherichia coli cells, comprising just 4.7 fg of starting DNA, and obtain sequencing coverage distributions that rival that of unamplified material. Digital droplet multiple displacement amplification provides a simple and effective method for amplifying minute amounts of DNA for accurate and uniform sequencing.  相似文献   

16.
Usher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II) and Roche 454 (GS FLX) for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous) out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified.  相似文献   

17.
Next‐generation DNA sequencing has enabled a rapid expansion in the size of molecular fungal ecology studies employing the nuclear internal transcribed spacer (ITS) region. Many sequence‐processing pipelines and protocols require sequence clustering to generate operational taxonomic units (OTUs) based on sequence similarity as a step to reduce total data quantity and complexity prior to taxonomic assignment. However, the consequences of ITS sequence clustering in regard to sample taxonomic coverage have not been carefully examined. Here we demonstrate that typically used clustering thresholds for fungal ITS sequences result in statistically significant losses in taxonomic coverage. Analyses using environmentally derived fungal sequences indicated an average of 3.1% of species went undetected (P < 0.05) if the sequences were denoised and clustered at a 97% threshold prior to taxonomic assignment. Additionally, an in silico analysis using a reference fungal ITS database suggested that approximately 25% of species went undetected if the sequences were clustered prior to taxonomic assignment. Finally, analysis of sequences derived from pure‐cultured fungal isolates of known identity indicated sequence denoising and clustering were not critical in improving identification accuracy.  相似文献   

18.
Many applications in molecular ecology require the ability to match specific DNA sequences from single- or mixed-species samples with a diagnostic reference library. Widely used methods for DNA barcoding and metabarcoding employ PCR and amplicon sequencing to identify taxa based on target sequences, but the target-specific enrichment capabilities of CRISPR-Cas systems may offer advantages in some applications. We identified 54,837 CRISPR-Cas guide RNAs that may be useful for enriching chloroplast DNA across phylogenetically diverse plant species. We tested a subset of 17 guide RNAs in vitro to enrich plant DNA strands ranging in size from diagnostic DNA barcodes of 1,428 bp to entire chloroplast genomes of 121,284 bp. We used an Oxford Nanopore sequencer to evaluate sequencing success based on both single- and mixed-species samples, which yielded mean chloroplast sequence lengths of 2,530–11,367 bp, depending on the experiment. In comparison to mixed-species experiments, single-species experiments yielded more on-target sequence reads and greater mean pairwise identity between contigs and the plant species' reference genomes. But nevertheless, these mixed-species experiments yielded sufficient data to provide ≥48-fold increase in sequence length and better estimates of relative abundance for a commercially prepared mixture of plant species compared to DNA metabarcoding based on the chloroplast trnL-P6 marker. Prior work developed CRISPR-based enrichment protocols for long-read sequencing and our experiments pioneered its use for plant DNA barcoding and chloroplast assemblies that may have advantages over workflows that require PCR and short-read sequencing. Future work would benefit from continuing to develop in vitro and in silico methods for CRISPR-based analyses of mixed-species samples, especially when the appropriate reference genomes for contig assembly cannot be known a priori.  相似文献   

19.
为了分析LITAF、RAB7、LMNA和MTMR2基因在中国人腓骨肌萎缩症(Charcot-Marie-Tooth disease, CMT)的突变特点, 文章分别应用PCR结合DNA序列分析方法和PCR-单链构象多态性(PCR-SSCP)结合DNA序列分析方法对6个常染色体显性遗传家系先证者和27个散发病例进行LITAF和RAB7基因突变分析; 应用PCR-SSCP结合DNA序列分析方法对14个常染色体遗传的CMT家系先证者和27个散发患者进行LMNA和MTMR2基因突变分析。结果发现: LITAF基因c.269G→A、c.274A→G序列变异和LMNA基因c.1243G→A、c.1910C→T序列变异, 未发现RAB7和MTMR2基因的序列变异。其中LITAF基因c.269G→A、LMNA基因c.1243G→A和c.1910C→T为新发现的单核苷酸多态; LITAF基因c.274A→G为已知多态。说明LITAF、RAB7、LMNA和MTMR2基因突变在中国人CMT患者中罕见。  相似文献   

20.
The ubiquity, high diversity and often‐cryptic manifestations of fungi and oomycetes frequently necessitate molecular tools for detecting and identifying them in the environment. In applications including DNA barcoding, pathogen detection from plant samples, and genotyping for population genetics and epidemiology, rapid and dependable DNA extraction methods scalable from one to hundreds of samples are desirable. We evaluated several rapid extraction methods (NaOH, Rapid one‐step extraction (ROSE), Chelex 100, proteinase K) for their ability to obtain DNA of quantity and quality suitable for the following applications: PCR amplification of the multicopy barcoding locus ITS1/5.8S/ITS2 from various fungal cultures and sporocarps; single‐copy microsatellite amplification from cultures of the phytopathogenic oomycete Phytophthora ramorum; probe‐based P. ramorum detection from leaves. Several methods were effective for most of the applications, with NaOH extraction favored in terms of success rate, cost, speed and simplicity. Frozen dilutions of ROSE and NaOH extracts maintained PCR viability for over 32 months. DNA from rapid extractions performed poorly compared to CTAB/phenol‐chloroform extracts for TaqMan diagnostics from tanoak leaves, suggesting that incomplete removal of PCR inhibitors is an issue for sensitive diagnostic procedures, especially from plants with recalcitrant leaf chemistry. NaOH extracts exhibited lower yield and size than CTAB/phenol‐chloroform extracts; however, NaOH extraction facilitated obtaining clean sequence data from sporocarps contaminated by other fungi, perhaps due to dilution resulting from low DNA yield. We conclude that conventional extractions are often unnecessary for routine DNA sequencing or genotyping of fungi and oomycetes, and recommend simpler strategies where source materials and intended applications warrant such use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号