首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Not all single-nucleotide polymorphisms (SNPs) can be determined using high-resolution melting (HRM) of small amplicons, especially class 3 and 4 SNPs. This is due mainly to the small shift in the melting temperature (Tm) between two types of homozygote. Choosing rs1869458 (a class 4 SNP) as a sample, we developed a modified small amplicon HRM assay. An allele-specific extension (ASE) primer, which ended at an SNP site and matched only one of the alleles, was added to the reaction as well as additional thermal steps for ASE. Following asymmetric polymerase chain reaction and melting curve analysis, heterozygotes were easily identified. Two types of homozygote were also distinguishable, indicating that extension primers 11 to 13 bases in length worked efficiently in an allele-specific way. Modification of the limiting amplification primer with locked nucleic acid increased the Tm difference between extension and amplification peaks and facilitated subsequent genotyping. In addition, 194 human genomic DNA samples were genotyped with the developed assay and by direct sequencing, with the different methods providing identical genotyping results. In conclusion, ASE-HRM is a simple, inexpensive, closed-tube genotyping method that can be used to examine all types of SNP.  相似文献   

3.
Recent studies have demonstrated that mitochondrial DNA (mtDNA) haplotype has a significant impact on the efficiency of bovine somatic cell nuclear transfer. Conventional methods for detecting mtDNA variations and haplotypes, such as restriction fragment length polymorphism (RFLP), temporal temperature gradient gel electrophoresis, dHPLC and sequencing, are labor intensive or expensive and have low sensitivity. High-resolution melting (HRM) analysis is a new technique for mutation detection and has the advantages of speed, cost, and accuracy. Here, we describe the genotyping of bovine mtDNA using HRM analysis. DNA samples containing mtDNA were extracted from 75 Holstein cows and subjected to rapid-cycle (<20 min) PCR of small amplicons (<120 bp) using specific primer sets. Capillaries containing the PCR products were then subjected to HRM analysis; data were acquired in 2 min and analyzed using the instrument's software. Five common bovine mtDNA single nucleotide polymorphisms were identified: 9602 G>A, 169 A>G, 166A>G with 173A>G, and 363C>G. These results agree with both sequencing and RFLP analysis. In addition, a very small amount of heteroplasmic variants (<5%) was sufficiently to be distinguished by HRM analysis that would be very useful to differentiate heteroplasmy vs. homoplasmy. HRM analysis thus provides a new approach to genotyping bovine mtDNA sequence variations and has many advantages over other methods, including speed of analysis, cost, and accuracy. We believe this will be a valuable technique for determining the efficiency of nuclear transfer in cloned embryos and for studying maternal effects on nuclear-cytoplasm interactions.  相似文献   

4.
Although Sequence-Characterized Amplified Region (SCAR) markers linked to the potato H1 locus, which confers resistance to pathotypes Ro1 and Ro4 of the potato cyst nematode (PCN) Globodera rostochiensis, have been reported, robust markers that enable estimation of allele dosage would improve the quality of information obtained from genotyping parental accessions (cultivars/breeding lines) and progeny populations within breeding programmes. With this in mind, we have developed single nucleotide polymorphism (SNP)-based molecular markers flanking the H1 resistance gene, using genomic re-sequence data from five elite tetraploid accessions. The published TG689 and 57R primer sequences were used in a Basic Local Alignment Search Tool (BLAST) examination of the reference potato genome, and SNPs within the vicinity of these primer regions were identified and targeted for designing probe-based High Resolution Melting (HRM) SNP assays. Evaluation of the subsequently developed HRM markers, TG689_1P and 57R_1P, against the publicly available SCAR markers, TG689 and 57R, indicated that the HRM markers enabled more reliable marker-trait association than the SCARs. Additionally, allelic dosage estimates for the H1 locus were also derived using the TG689_1P marker, providing a tool to optimise parental and progeny selections in PCN resistance breeding.  相似文献   

5.
A novel method for genotyping the clustered, regularly interspaced short-palindromic-repeat (CRISPR) locus of Campylobacter jejuni is described. Following real-time PCR, CRISPR products were subjected to high-resolution melt (HRM) analysis, a new technology that allows precise melt profile determination of amplicons. This investigation shows that the CRISPR HRM assay provides a powerful addition to existing C. jejuni genotyping methods and emphasizes the potential of HRM for genotyping short sequence repeats in other species.  相似文献   

6.
【背景】在过去的十几年里,基于核糖体RNA基因的扩增子测序技术被广泛用于各种生态系统中微生物群落的多样性检测。扩增子测序的使用极大地促进了土壤、水体、空气等环境中微生物生态的相关研究。【目的】随着高通量测序技术的不断发展和参考数据库的不断更新,针对不同的环境样本的引物选择和改进仍然需要更深入的校验。【方法】本文收集了目前在微生物群落研究中被广泛采用的标记基因扩增通用引物,包括16S rRNA基因扩增常用的8对通用引物和2对古菌引物、9对真菌转录间隔区(internal transcribed spacer,ITS)基因扩增引物,以及18S rRNA基因扩增的4对真核微生物通用引物和1对真菌特异性引物。这些引物中包括了地球微生物组计划(Earth Microbiome Project,EMP)推荐的2对16S rRNA基因扩增引物、1对ITS1基因扩增引物和1对18S rRNA基因扩增引物。采用最近更新的标准数据库对这些引物进行了覆盖度和特异性评价。【结果】EMP推荐的引物依然具有较高的覆盖度,而其他引物在覆盖度及对特定环境或类群的特异性上也各有特点。此外,最近有研究对这些通用引物进行了一些改进,而我们也发现,一个碱基的变化都可能会导致评价结果或扩增产物发生明显变化,简并碱基的引入既可以覆盖更多的物种,但同时也会在一定程度上降低关注物种的特异性。【结论】研究结果为微生态研究中标记基因的引物选择提供了一个广泛的指导,但在关注具体科学问题时,引物的选择仍需数据指导与实验尝试。  相似文献   

7.
High resolution melt (HRM) is gaining considerable popularity as a simple and robust method for genotyping sequence variants. However, accurate genotyping of an unknown sample for which a large number of possible variants may exist will require an automated HRM curve identification method capable of comparing unknowns against a large cohort of known sequence variants. Herein, we describe a new method for automated HRM curve classification based on machine learning methods and learned tolerance for reaction condition deviations. We tested this method in silico through multiple cross-validations using curves generated from 9 different simulated experimental conditions to classify 92 known serotypes of Streptococcus pneumoniae and demonstrated over 99% accuracy with 8 training curves per serotype. In vitro verification of the algorithm was tested using sequence variants of a cancer-related gene and demonstrated 100% accuracy with 3 training curves per sequence variant. The machine learning algorithm enabled reliable, scalable, and automated HRM genotyping analysis with broad potential clinical and epidemiological applications.  相似文献   

8.
During the last decade, DNA mutations in the porcine ryanodine receptor 1 gene (RYR1, C1843T) and the estrogen receptor 1 gene (ESR1, T1665G), have been widely used in marker-assisted selection (MAS) for the pig industry. These 2 well-characterized SNPs in RYR1 and ESR1 are responsible for porcine stress syndrome (PSS) and litter size, respectively. Here, we describe a reliable, high-efficiency method for the genotyping of these 2 genes using the high-resolution melting (HRM) method. The HRM approach exhibited high-accuracy and repeatability, comparable with the classic PCR-restriction fragment length polymorphism (PCR-RFLP) approach, and is potentially suitable for large-scale genotyping in commercial pig farms.  相似文献   

9.
Free-living nitrogen-fixing prokaryotes (diazotrophs) are ubiquitous in soil and are phylogenetically and physiologically highly diverse. Molecular methods based on universal PCR detection of the nifH marker gene have been successfully applied to describe diazotroph populations in the environment. However, the use of highly degenerate primers and low-stringency amplification conditions render these methods prone to amplification bias, while less degenerate primer sets will not amplify all nifH genes. We have developed a fixed-primer-site approach with six PCR protocols using less degenerate to nondegenerate primer sets that all amplify the same nifH fragment as a previously published PCR protocol for universal amplification. These protocols target different groups of diazotrophs and allowed for direct comparison of the PCR products by use of restriction fragment length polymorphism fingerprinting. The new protocols were optimized on DNA from 14 reference strains and were subsequently tested with bulk DNA extracts from six soils. These analyses revealed that the new PCR primer sets amplified nifH sequences that were not detected by the universal primer set. Furthermore, they were better suited to distinguish between diazotroph populations in the different soils. Because the novel primer sets were not specific for monophyletic groups of diazotrophs, they do not serve as an identification tool; however, they proved powerful as fingerprinting tools for subsets of soil diazotroph communities.  相似文献   

10.
DNA markers have the potential to be a powerful tool for the molecular study and breeding of agronomic traits of temperate forage grasses, but some of these grasses have only limited sequence information available. We aimed to design highly transferable primer sets by using the abundant sequence information available for related crop species such as wheat and rice. The degree of similarity between the primer sequences of the wheat PCR-based landmark unique gene (PLUG) primer set and the corresponding sequences of rice orthologs was designated as the ??universality index?? (UI). We classified 359 PLUG primer pairs based on their UI values and found that primer pairs with high UI values showed higher successful amplification rates in Festuca and Lolium species than those with low UI values. Based on these results, we designed new primer sets, designated Conserved Three-prime-End Region (COTER) primers, with complete similarity to rice orthologs for eight bases at the 3?? end of each primer. COTER primer sets developed from both tall fescue and wheat showed high transferability in six temperate grasses (mean amplification rates of 95% for tall fescue primers; 79% for wheat primers). This strategy and primer information could also be useful for developing DNA markers for other grass species with little genome information available.  相似文献   

11.
Polymerase chain reaction with confronting two-pair primers (PCR-CTPP) is a convenient method for genotyping single nucleotide polymorphisms, saving time, and costs. It uses four primers for PCR; F1 and R1 for one allele, and F2 and R2 for the other allele, by which three different sizes of DNA are amplified; between F1 and R1, between F2 and R2, and between F1 and R2. To date, we have applied PCR-CTPP successfully for genotyping more than 60 polymorphisms. However, it is not rare that PCR does not produce balanced amplification of allele specific bands. Accordingly, the method was modified by attaching a common sequence at the 5' end of two-pair primers and adding another primer with the common sequence in PCR, in total five different primers in a tube for PCR. The modification allowed one primer amplification for the products of initial PCR with confronting two-pair primers, named as one primer amplification of PCR-CTPP products (OPA-CTPP). This article demonstrates an example for an A/G polymorphism of paraoxonase 1 (PON1) Gln192Arg (rs662). PCR-CTPP failed clear genotyping for the polymorphism, while OPA-CTPP successfully produced PCR products corresponding to the allele. The present example indicated that the OPA-CTPP would be useful in the case that PCR-CTPP failed to produce balanced PCR products specific to each allele.  相似文献   

12.
We proposed a modification the procedure of genotyping based in labeled universal primer and tailed primer. In the standard protocol, three primers are used in the same PCR reaction, a forward primer with tail added at the 5′ end of the identical sequence to labeled universal primer with dye-fluorescent and a reverse primer. Unfortunately, the choice of a labeled primer characterized by a large number of complementary sequences in target genomes (which is more probable in larger genomes) result in unspecific amplifications (false positive) can cause absence or decrease amplification of the locus of interest and also false interpretation of the analysis. However, identification of possible homologies between the primer chosen for labelling and the genome is rarely possible from the available DNA data bases. In our approach, cycling is interrupted for the addition of the labeled primer only during the final cycles, thus minimizing unspecific amplification and competition between primers, resulting in the more fidelity amplification of the target regions.  相似文献   

13.
A series of oligonucleotide primer pairs covering the entire genome of Solenopsis invicta virus 1 (SINV-1) were used to probe the genome of its host, S. invicta, for integrated fragments of the viral genome. All of the oligonucleotide primer sets yielded amplicons of anticipated size from cDNA created from an RNA template from SINV-1. However, no corresponding amplification was observed when genomic DNA (from 32 colonies of S. invicta) was used as template for the PCR amplifications. Host DNA integrity was verified by amplification of an ant-specific gene, SiGSTS1. The representation of fire ant colonies included both social forms, monogyne and polygyne, and those infected and uninfected with SINV-1. Furthermore, no amplification was observed from genomic DNA from ant samples collected from Argentina or the US. Thus, it appears that SINV-1 genome integration, or a portion therein, has not likely occurred within the S. invicta host genome.  相似文献   

14.
Human schistosomiasis caused by Schistosoma japonicum and Schistosoma mekongi is a chronic and debilitating helminthic disease still prevalent in several countries of Asia. Due to morphological similarities of cercariae and eggs of these 2 species, microscopic differentiation is difficult. High resolution melting (HRM) real-time PCR is developed as an alternative tool for the detection and differentiation of these 2 species. A primer pair was designed for targeting the 18S ribosomal RNA gene to generate PCR products of 156 base pairs for both species. The melting points of S. japonicum and S. mekongi PCR products were 84.5±0.07℃ and 85.7±0.07℃, respectively. The method permits amplification from a single cercaria or an egg. The HRM real-time PCR is a rapid and simple tool for differentiation of S. japonicum and S. mekongi in the intermediate and final hosts.  相似文献   

15.
目前,PCR引物设计主要依赖于软件对引物熔点的模拟计算,而PCR退火条件的优化需进行不同条件下的扩增实验。为开发一种可高效、精确评价引物和确定退火条件的方法,本研究采用高分辨率熔解曲线(high resolution melting,HRM)测定技术直接分析短链DNA的熔点,用于引物优劣性的评价,并为退火条件的优化提供参考。本文用HRM法直接测定了非完全互补的双链DNA以及DNA发卡结构的熔点,结果显示:(1)与完全互补的双链DNA相比,较为稳定的单碱基错配A?G、G?G和T?G的熔点只降低2℃ ~ 3℃,部分双碱基错配的熔点只降低4℃ ~ 6℃,单碱基突出熔点只降低4℃~ 5℃。因此,如果采用的退火温度不当,部分错配的非目的模板可能会被扩增。(2)即使发卡结构的茎干区只有6 bp,当其环区碱基少于10 nt时,其熔点也可达到60℃以上。此外,环区的长度对发卡熔点也有较大影响。根据本研究结果发现,引物设计时应尽量避免模板引物结合区同其邻近的30 nt碱基有6 bp以上的互补部分。综上所述,本研究证明HRM熔点法是一种高效评价引物及确定退火温度的方法。  相似文献   

16.
R Ngui  YA Lim  KH Chua 《PloS one》2012,7(7):e41996

Background

Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world''s poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species.

Methods

Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method''s sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples.

Conclusion

The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species.  相似文献   

17.
Two low phytic acid (lpa) mutants, Gm-lpa-ZC-2 (ZC-lpa) and Gm-lpa-TW-1 (TW-lpa), resulting from a G → A mutation in GmIPK1 and a 2-bp deletion in GmMIPS1, respectively, were previously developed to increase the nutritional value and environmental friendliness of soybean meal. Two functional CAPS markers were subsequently developed for genotyping plants carrying the two mutant genes; however, both are costly and time consuming and hence unsuitable for large-scale breeding use. In the present work, by integrating a quick DNA extraction protocol with an optimized high-resolution melting curve (HRM) analysis, we developed a fast and high-throughput genotyping system for the two mutations. In this system, (1) DNAs are extracted within half an hour using a protocol that only requires freezing and heating of leaf disks in two non-toxic solutions and can be directly used for PCR; (2) for genotyping, asymmetric PCRs with competitive primers are performed, and the samples are then discriminated and grouped through HRM analysis; and (3) all steps are performed in a 96-well plate, and hence adaptable to high-throughput genotyping. Although the system was developed for two lpa mutations, the general principle should be applicable to any other genes in soybean.  相似文献   

18.

Background

HLA genotyping by next generation sequencing (NGS) requires three basic steps, PCR, NGS, and allele assignment. Compared to the conventional methods, such as PCR-sequence specific oligonucleotide primers (SSOP) and -sequence based typing (SBT), PCR-NGS is extremely labor intensive and time consuming. In order to simplify and accelerate the NGS-based HLA genotyping method for multiple DNA samples, we developed and evaluated four multiplex PCR methods for genotyping up to nine classical HLA loci including HLA-A, HLA-B, HLA-C, HLA-DRB1/3/4/5, HLA-DQB1, and HLA-DPB1.

Results

We developed multiplex PCR methods using newly and previously designed middle ranged PCR primer sets for genotyping different combinations of HLA loci, (1) HLA-DRB1/3/4/5, (2) HLA-DQB1 (3.8 kb to 5.3 kb), (3) HLA-A, HLA-B, HLA-C, and (4) HLA-DPB1 (4.6 kb to 7.2 kb). The primer sets were designed to genotype polymorphic exons to the field 3 level or 6-digit typing. When we evaluated the PCR method for genotyping all nine HLA loci (9LOCI) using 46 Japanese reference subjects who represented a distribution of more than 99.5% of the HLA alleles at each of the nine HLA loci, all of the 276 alleles genotyped, except for HLA-DRB3/4/5 alleles, were consistent with known alleles assigned by the conventional methods together with relevant locus balance and no excessive allelic imbalance. One multiplex PCR method (9LOCI) was able to provide precise genotyping data even when only 1 ng of genomic DNA was used for the PCR as a sample template.

Conclusions

In this study, we have demonstrated that the multiplex PCR approach for NGS-based HLA genotyping could serve as an alternative routine HLA genotyping method, possibly replacing the conventional methods by providing an accelerated yet robust amplification step. The method also could provide significant merits for clinical applications with its ability to amplify lower quantity of samples and the cost-saving factors.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1514-4) contains supplementary material, which is available to authorized users.  相似文献   

19.
橡胶树是我国重要的热带经济作物,主要通过形态特征进行品种鉴定,但橡胶树品种间形态差异较小,品种鉴定难度较大.为建立一种快速、稳定且准确的橡胶树品种鉴定方法,本研究从426对橡胶树SSR引物中筛选出5对产物清晰且扩增稳定的引物组成核心引物对,利用高通量基因分型技术构建了129份橡胶树品种的特异DNA指纹图谱,5对引物共扩...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号