首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A microchip electrophoresis (MCE) method with chemiluminescence (CL) detection was developed for the determination of carnosine-related peptides, including carnosine, homocarnosine, and anserine, in biological samples. A simple integrated MCE-CL system was built to perform the assays. The highly sensitive CL detection was achieved by means of the CL reaction between hydrogen peroxide and N-(4-aminobutyl)-N-ethylisoluminol-tagged peptides in the presence of adenine as a CL enhancer and Co2+ as a catalyst. Experimental conditions for analyte labeling, MCE separation, and CL detection were studied. MCE separation of the above-mentioned three peptides took less than 120 s. Detection limits (signal/noise ratio [S/N] = 3) of 3.0 × 10−8, 2.8 × 10−8, and 3.4 × 10−8 M were obtained for carnosine, anserine, and homocarnosine, respectively. The current MCE-CL method was applied for the determination of carnosine, anserine, and homocarnosine in human cerebrospinal fluid (CSF) and canine plasma. Homocarnosine was detected at the micromolar (μM) level in the CSF samples analyzed, whereas the levels of carnosine and anserine in these samples were below the detection limit of the assay. Interestingly, both carnosine and anserine were detected in the canine plasma samples, whereas homocarnosine was not.  相似文献   

2.
The catalytic activity of gold nanoparticles (AuNPs) on a luminol–H2O2 chemiluminescence (CL) system is found to be greatly enhanced after its crosslinking aggregation induced by immunoreaction. Based on this observation, a one-step homogeneous non-stripping CL metalloimmunoassay was designed. In the presence of corresponding antigen (Ag), the immunoreaction caused the aggregation of antibody (Ab)-modified AuNPs, and these crosslinking aggregated AuNPs could catalyze luminol–H2O2 CL reaction to produce a much stronger CL signal than dispersed Ab-modified AuNPs. The assay, including immunoreaction and detection, can be accomplished in homogeneous solution. In the assay, no tedious and strict stripping of metal nanoparticles, difficult synthesis of labels, multiple steps of immunoreactions and washings, and complicated magnetic separation process were required. The detection limit of human immunoglobulin G (IgG, 3σ) was estimated to be as low as 3.2 × 10−11 g ml−1. The sensitivity was increased by two orders of magnitude over that of other AuNP-based CL immunoassay. The current CL metalloimmunoassay offers the advantages of being simple, cheap, rapid, and sensitive.  相似文献   

3.
Zhao S  Wang J  Ye F  Liu YM 《Analytical biochemistry》2008,378(2):127-131
A simple and sensitive method based on capillary electrophoresis (CE) with chemiluminescence (CL) detection has been developed for the determination of uric acid (UA). The sensitive detection was based on the enhancement effect of UA on the CL reaction between luminol and potassium ferricyanide (K3[Fe(CN)6]) in alkaline solution. A laboratory-built reaction flow cell and a photon counter were deployed for the CL detection. Experimental conditions for CL detection were studied in detail to achieve a maximum assay sensitivity. Optimal conditions were found to be 1.0 × 10−4 M luminol added to the CE running buffer and 1.0 × 10−4 M K3[Fe(CN)6] in 0.2 M NaOH solution introduced postcolumn. The proposed CE-CL assay showed good repeatability (relative standard deviation [RSD] = 3.5%, n = 11) and a detection limit of 3.5 × 10−7 M UA (signal/noise ratio [S/N] = 3). A linear calibration curve ranging from 6.0 × 10−7 to 3.0 × 10−5 M UA was obtained. The method was evaluated by quantifying UA in human urine and serum samples with satisfactory assay results.  相似文献   

4.
Guihen E  Hogan AM  Glennon JD 《Chirality》2009,21(2):292-298
In this research, a capillary electrophoretic method for the fast enantiomeric resolution of (R,S)-naproxen was investigated. Method development involved variation of applied potential, buffer concentration, buffer pH, and cyclodextrin concentration. The optimum electrophoretic separation conditions were 110 mM sodium acetate run buffer (pH 6.0), 30 mM methyl-beta-cyclodextrin, 20% (v/v) acetonitrile, 25 degrees C. The total length of capillary was 48 cm, (50 microm I.D.) with ultra violet (UV) detection at 232 nm. Using these conditions, the number of theoretical plates was close to one million (896,000/m). The possibility of achieving a fast chiral separation of (R,S)-naproxen on a microchip of 2.5 cm in length was investigated. Complete enantiomeric resolution of naproxen was achieved in less than 1 min, on this microchip platform, with linear imaging UV detection. This system had the advantage of real-time separation monitoring, so that enantiomeric resolution could be visually observed, and high-speed chiral analysis was realized. The microchip electrophoresis (MCE) separation was compared with the capillary electrophoresis (CE) separation with regards to speed, efficiency, separation platform, and precision. This work highlights the potential of CE and MCE in future chiral separations.  相似文献   

5.
A rapid and sensitive microchip electrophoresis (MCE) method with laser induced fluorescence (LIF) detection has been developed for the quantification of D-tyrosine (Tyr) in biological samples. The assay was performed using a MCE-LIF system with glass/poly(dimethylsiloxane) (PDMS) hybrid microchip after pre-column derivatization of amino acids with fluorescein isothiocyanate (FITC). Chiral separation of the derivatives was achieved by cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) using γ-CD as chiral selector in the running buffer. D/L-Tyr enantiomer was well separated in less than 140s. The limit of detection (S/N=3) was 3.3 × 10(-8) M. Using the present method, D-Tyr level in human plasma was found to vary significantly from normal humans to patients suffering from renal failure.  相似文献   

6.
A new chemiluminescence (CL) system based on the reaction of Ag(III) complex with luminol is, for the first time, reported in this work. Incorporated with a flow injection analyses (FIA), the new CL system has been applied for the determination of free cortisol in human sera. The system is based on the CL reaction of luminol with Ag(III) in alkaline solutions, while cortisol can dramatically enhance CL intensities. Under optimum conditions, CL intensities are proportional to concentration of cortisol in the range of 0.05-7.5 nM. The limit of detection is 2.0 × 10−11 M (3σ), with a relative standard deviation (n = 11) of 1.9% for 3.5 × 10−9 M cortisol. Eight human blood serum samples were all handled by solid-phase extraction (SPE) clean-up and enrichment before detection. This detection system is highly sensitive and convenient and may find wide applications. Based on the chemiluminescent spectra, a possible reaction mechanism is also suggested.  相似文献   

7.
As part of our ongoing effort to develop electrophoretic assay technology for clinical diagnostics, we describe a competitive immunoassay for the determination of serum thyroxine (T4) based on electrophoresis and laser induced fluorescence (LIF). Measurements of total T4 are useful for the clinical evaluation of thyroid function. A fluorescein thyroxine conjugate was utilized in conjunction with a polyclonal antibody preparation as assay reagents. Capillary electrophoresis (CE) conditions tolerant of the direct injection of serum without extraction or other sample preparation steps were developed and used for quantitation of total T4 in serum. We have been exploring the use of micromachined devices with arrays of channels for high assay throughput. Our assay protocol was carried in a microchip format. The results illustrate that gains in speed can be additionally achieved, with the electrophoretic separation of free from bound labelled T4 being performed in about 15 s for serum samples.  相似文献   

8.
Plasma renin activity (PRA) is a well-established biomarker for assessing the efficacy of various antihypertensive agents such as direct renin inhibitors, angiotensin receptor blockers, and angiotensin-converting enzyme inhibitors (ACEIs). PRA measurements are obtained through the detection and quantification of angiotensin I (Ang I) produced by the action of renin on its natural substrate angiotensinogen. The most accepted and reproducible method for PRA measurement uses an antibody capture Ang I methodology that employs specific antibodies that recognize and protect Ang I against angiotensinase activities contained in plasma. The amount of Ang I is then quantified by either radioimmunoassay (RIA) or enzyme immunoassay (EIA). In the current report, we describe the optimization of a novel homogeneous immunoassay based on the AlphaScreen technology for the detection and quantification of antibody-captured Ang I using AlphaLISA acceptor beads in buffer and in the plasma of various species (human, rat, and mouse). Ex vivo measurements of renin activity were performed using 10 μl or less of a reaction mixture, and concentrations as low as 1 nM Ang I were quantified. Titration curves obtained for the quantification of Ang I in buffer and plasma gave similar EC50 values of 5.6 and 14.4 nM, respectively. Both matrices generated an equivalent dynamic range that varies from approximately 1 to 50 nM. Renin inhibitors have been successfully titrated and IC50 values obtained correlated well with those obtained using EIA methodology (r2 = 0.80). This assay is sensitive, robust, fast, and less tedious than measurements performed using nonhomogeneous EIA. The AlphaLISA methodology is homogeneous, does not require wash steps prior to the addition of reagents, and does not generate radioactive waste.  相似文献   

9.
Immunoassays are one of the most useful diagnostic techniques in disease assessment, drug metabolite analysis, and environmental applications due largely in part to the selectivity and sensitivity provided by antibody-antigen interactions. Here, a multiplexed immunoassay termed cleavable tag immunoassay (CTI) was performed in competitive, non-competitive, and mixed formats for the analysis of proteins and small molecule biomarkers of inflammation and tissue damage. Microchip capillary electrophoresis (MCE) with fluorescence detection was employed for the analysis of fluorescently labeled tags corresponding to the analytes of interest cleaved from the detection antibodies. For this work we have selected 3-nitrotyrosine (3-NT) a molecule indicative of reactive nitrogen species (RNS), thyroxine (T4) a molecule used to monitor thyroid gland function, and C-reactive protein (CRP) a marker of chronic inflammation as model analytes to demonstrate the assay principles. The simultaneous detection of 3-nitrotyrosine (3-NT) and thyroxine (T4) was carried out as a proof-of-principle for the competitive CTI while non-competitive CTI performance was demonstrated via the analysis of C-reactive protein (CRP). Limit of detections (LOD) and dynamic ranges were investigated. LOD for 3-NT, T4, and CRP were 0.5μg/mL, 23nM, and 5μg/mL, respectively thus demonstrating the ability of the CTI to detect proteins and small molecules within clinical reference ranges. Moreover, this is the first report of the use of mixed format CTI chemistry for the simultaneous detection of proteins (CRP) and small molecules (3-NT) in a single assay. The success of this work demonstrates the ability of CTI to analyze intact proteins and small molecule biomarkers simultaneously.  相似文献   

10.
In this study, a sensitive dual-label time-resolved reverse competitive chemiluminescent immunoassay was developed for simultaneous detection of chloramphenicol (CAP) and clenbuterol (CLE) in milk. The strategy was performed based on the distinction of the kinetic characteristics of horseradish peroxidase (HRP) and alkaline phosphatase (ALP) in chemiluminesecence (CL) systems and different orders of magnitude in HRP CL value for CAP and ALP CL value for CLE in the chemiluminescent immunoassay. Capture antibodies were covalently bound to the amine group functionalized chemiluminescent microtiter plate (MTP) for efficient binding of detection antibodies for the enzymes labeled CAP (HRP-CAP) and CLE (ALP-CLE). The CL signals were recorded at different time points by the automatic luminometers with significant distinction in the dynamic curves. When we considered the ALP CL value (about 105) of CLE as background for HRP CL signal value (about 107) of CAP, there was no interaction from ALP CL background of CLE and the differentiation of CAP and CLE can be easily achieved. The 50% inhibition concentration (IC50) values of CAP and CLE in milk samples were 0.00501 µg L−1 and 0.0128 µg L−1, with the ranges from 0.0003 µg L−1 to 0.0912 µg L−1 and from 0.00385 µg L−1 to 0.125 µg L−1, respectively. The developed method is more sensitive and of less duration than the commercial ELISA kits, suitable for simultaneous screening of CAP and CLE.  相似文献   

11.
This article describes the employment of a novel p-phenol derivative, 4-(1,2,4-triazol-1-yl)phenol (TRP), as a highly potent signal enhancer of the luminol-hydrogen peroxide (H2O2)-horseradish peroxidase (HRP) chemiluminescence (CL) system. The CL reaction conditions were optimized, and the enhancement characteristics of TRP were compared with those of p-iodophenol (PIP). TRP produced a strong enhancement of the CL with the effect of prolonging the light emission. The developed system was then applied to the determination of H2O2 with immobilized HRP using magnetic beads as a solid support. The linear range for H2O2 was 2.0 × 10−6 to 1.0 × 10−3 M. The detection limit for H2O2 was 2.0 × 10−6 M. The proposed sensor was applied successfully to the determination of H2O2 in rainwater.  相似文献   

12.
A series of 3-(pyridin-2-yl-ethynyl)benzamide negative allosteric modulators of the metabotropic glutamate receptor 5 (mGluR5 NAMs) have been prepared. Starting from HTS hit 1 (IC50: 926 nM), potent mGluR5 NAMs showing excellent potencies (IC50s <50 nM) and good physicochemical profiles were prepared by monitoring LipE values. One compound 26 showed excellent mGluR5 binding (Ki: 21 nM) and antagonism (IC50: 8 nM), an excellent rat PK profile (CL: 12 mL/min/kg, %F: 85) and showed oral activity in a mouse 4-Plate Behavioral model of anxiety (MED: 30 mpk) and a mouse Stress Induced Hyperthermia model of anxiety (MED 17.8 mpk).  相似文献   

13.
A highly sensitive and selective fluorescence method for the detection of acetylcholine (ACh) based on enzyme-generated hydrogen peroxide (H2O2) and a new boronate intramolecular charge transfer (ICT) fluorescence probe, 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-butyl-1,8-naphthalimide (BN), was developed. This strategy involves the reaction of ACh with acetylcholinesterase (AChE) to produce choline, which is further oxidized by choline oxidase (ChOx) to obtain betaine and H2O2. The enzyme-generated H2O2 reacts with BN and results in hydrolytic deprotection of BN to generate fluorescent product (4-hydroxyl-N-butyl-1,8-naphthalimide, ON). Two consecutive linear response ranges allow determining ACh in a wide concentration range with a low detection limit of 2.7 nM (signal/noise = 3). Compared with other fluorescent probes based on the mechanism of nonspecific oxidation, this reported boronate probe has the advantage of no interference from other biologically relevant reactive oxygen species (ROS) on the detection of ACh. This study provides a new method for the detection of ACh with high selectivity and sensitivity.  相似文献   

14.
Individual and simultaneous determination of 50 nM uric acid (UA) and ascorbic acid (AA) using enlarged, citrate-stabilized gold nanoparticles (AuNPs) self-assembled to 2,5-dimercapto-1,3,4-thiadiazole (DMT) monolayer modified Au (Au/DMT) electrode by an amperometric method is described for the first time. Self-assembly of AuNPs on the electrode surface was confirmed by atomic force microscopy (AFM), attenuated total reflectance FT-IR and diffuse reflectance spectral measurements. The electron transfer reaction (ETR) of [Fe(CN)6]3−/4− was blocked at Au/DMT electrode, whereas it was restored with a peak separation of 200 mV after the attachment of AuNPs on the Au/DMT (Au/DMT/AuNPs) electrode, which was confirmed from the ETR of the [Fe(CN)6]3−/4− redox couple. When the self-assembled AuNPs were enlarged by hydroxylamine seeding, the ETR of [Fe(CN)6]3−/4− was improved significantly with a peak separation of 100 mV. Tapping mode AFM showed that the average size of the enlarged-AuNPs (E-AuNPs) was 50-70 nm. The E-AuNPs modified electrode catalyzes the oxidation of AA and UA, separates their voltammetric signals by 200 mV, and has excellent sensitivity towards AA and UA with a detection limit of 50 nM. The practical application of the modified electrode was demonstrated by measuring the concentration of UA in blood serum and urine.  相似文献   

15.
A sensitive and homogeneous immunoassay (IA) based on capillary electrophoresis (CE) with enhanced chemiluminescence (CL) detection has been developed for the determination of hepatitis B surface antigen (HBsAg) and antibody (HBsAb) in human serum. The conditions for the CL reaction and electrophoresis were investigated in detail using horseradish peroxidase (HRP) labeled HBsAg (HBsAg*) as a marker because of its catalytic effects on the luminol-hydrogen peroxide reaction. The CL reaction was enhanced by para-iodophenol and the CL detector was designed uniquely without any dead volume or diluents effect. The present method has been used for assaying HBsAg and HBsAb in human serum using a competitive format and a non-competitive format, respectively. Under the optimal conditions, the linear ranges were from 1 to 400 pmol/L (R=0.9988) for HBsAg and 2 to 200 mIU/mL (R=0.9981) for HBsAb. The detection limits were 0.4 pmol/L and 1 mIU/mL for HBsAg and HBsAb, respectively. The relative standard deviations of peak area were 4.2% and the errors of it were from -0.03% to +0.05% for 80 pmol/L HBsAg* (n=7). In this study, the free HBsAg* and the bound HBsAg* (HBsAg*-HBsAb) were separated in the separation capillary within 6 min using a borate run buffer. To verify the experimental reliability, the result was comparable with that of enzyme linked immunosorbent assay (ELISA) and demonstrated the feasibility of the CE-CL immunoassay method for clinical diagnosis.  相似文献   

16.
An automated multicomponent mesofluidic system (MCMS) based on biorecognitions carried out on meso-scale glass beads in polydimethylsiloxane (PDMS) channels was developed. The constructed MCMS consisted of five modules: a bead introduction module, a bioreaction module, a solution handling module, a liquid driving module, and a signal collection module. The integration of these modules enables the assay to be automated and reduces it to a one-step protocol. The MCMS has successfully been applied toward the detection of veterinary drug residues in animal-derived foods. The drug antigen-coated beads (?250 μm) were arrayed in the PDMS channels (?300 μm). The competitive immunoassay was then carried out on the surface of the glass beads. After washing, the Cy3-labeled secondary antibody was introduced to probe the antigen-antibody complex anchored to the beads. The fluorescence intensity of each bead was measured and used to determine the residual drug concentration. The MCMS is highly sensitive, with its detection limits ranging from 0.02 (salbutamol) to 3.5 μg/L (sulfamethazine), and has a short assay time of 45 min or less. The experimental results demonstrate that the MCMS proves to be an economic, efficient, and sensitive platform for multicomponent detection of compound residues for contamination in foods or the environment.  相似文献   

17.
We present a new application of the noncompetitive phage anti-immunocomplex assay (PHAIA) by converting an existing competitive assay to a versatile noncompetitive sandwich-type format using immunocomplex binding phage-borne peptides to detect the brominated flame retardant, brominated diphenyl ether 47 (BDE 47). Three phage-displayed 9-mer disulfide-constrained peptides that recognize the BDE 47-polyclonal antibody immunocomplex were isolated. The resulting PHAIAs showed variable sensitivities, and the most sensitive peptide had a dose-response curve with an SC50 (concentration of analyte producing 50% saturation of the signal) of 0.7 ng/ml BDE 47 and a linear range of 0.3-2 ng/ml, which was nearly identical to the best heterologous competitive format (IC50 of 1.8 ng/ml, linear range of 0.4-8.5/ml). However, the PHAIA was 1400-fold better than homologous competitive assay. The validation of the PHAIA with extracts of house furniture foam as well as human and calf sera spiked with BDE 47 showed overall recovery of 80-113%. The PHAIA was adapted to a dipstick format (limit of detection of 3.0 ng/ml), and a blind test with six random extracts of local house furniture foams showed that the results of the PHAIA and dipstick assay were consistent, giving the same positive and negative detection.  相似文献   

18.
A simple and effective capillary electrophoresis–chemiluminescence (CE–CL) detection system was developed based on an ultra‐fast bis(2,4,6‐trichlorophenyl)oxalate (TCPO) chemiluminescence (CL) reaction (0.6 s duration) that avoided overlapping peaks and peak tailing. Through a series of static injection experiments, this unusually rapid CL reaction was ascribed to the catalytic effect of imidazole in the tetrahydrofuran solvent, which has been rarely utilized in such investigations. A possible mechanism is given to explain the results. Under the optimized conditions, rhodamine 6 G (R6G) and its hydrolysis product (R6G‐COOH) could be efficiently separated through electrophoresis in 7 min, with sensitive CL detection in the proposed CE–CL system. In this way, the alkaline hydrolysis of R6G was monitored, followed by estimation of relative rate constants and activation energy. This finding and application should be helpful in further study for the TCPO CL reaction, and revealed an attractive opportunity for simplifying the CE–CL system, such as in a microchip device. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A simple and ultrasensitive flow injection chemiluminescence competitive immunoassay based on gold nanoparticle‐loaded enzyme for the detection of chloramphenicol (CAP) residues in shrimp and honey has been developed. Due to their good biocompatibility and large specific surface area, carboxylic resin beads can be used as solid phase carriers to immobilize more coating antigens (Ag). In addition, gold nanoparticles could provide an effective matrix for loading more CAP antibody and horseradish peroxidase, which would effectively catalyze the system of luminol–p‐iodophenol (PIP)–H2O2. A competitive immunoassay strategy was used for detection of CAP, in which CAP in the sample would compete with the coating Ag for the limited antibodies, leading to a chemiluminescence (CL) signal decrease with increase in CAP concentration. A wide linear range 0.001–10 ng ml?1 (R2 = 0.9961) was obtained under optimized conditions, and the detection limit (3σ) was calculated to be 0.33 pg ml?1. This method was also been successfully applied to determine CAP in shrimp and honey samples. The immunosensor proposed in this study not only has the advantages of high sensitivity, wider linear range, and satisfactory stability, but also expands the application of flow injection CL immunoassay in antibiotic detection.  相似文献   

20.
A novel sensitive method has been developed for the detection of adenosine (AD) in human urine by using enhanced resonance light scattering (RLS). This method is based on the specific recognition and signal amplification of adenosine aptamer (Apt) coupled with gold nanoparticles (GNPs) via G-quartet-induced nanoparticle assembly, which was fabricated by triggering a structure switching of the 3′ terminus G-rich sequence and aptamer duplex. RLS signal linearly correlated with the concentration of adenosine over the range of 6-115 nM. The limit of detection (LOD) for adenosine is 1.8 nM with relative standard deviations (RSD) of 2.90-4.80% (n = 6). The present method has been successfully applied to determination of adenosine in real human urine, and the obtained results were in good agreement with those obtained by the HPLC method. Our investigation shows that the combination of the excellent selectivity of aptamer with the high sensitivity of the RLS technique could provide a promising potential for aptamer-based small molecule detection, and be beneficial in extending the application of RLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号