首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A high-throughput RapidFire mass spectrometry assay is described for the JMJD2 family of Fe(2+), O(2), and α-ketoglutarate-dependent histone lysine demethylases. The assay employs a short amino acid peptide substrate, corresponding to the first 15 amino acid residues of histone H3, but mutated at two positions to increase assay sensitivity. The assay monitors the direct formation of the dimethylated-Lys9 product from the trimethylated-Lys9 peptide substrate. Monitoring the formation of the monomethylated and des-methylated peptide products is also possible. The assay was validated using known inhibitors of the histone lysine demethylases, including 2,4-pyridinedicarboxylic acid and an α-ketoglutarate analogue. With a sampling rate of 7 s per well, the RapidFire technology permitted the single-concentration screening of 101 226 compounds against JMJD2C in 10 days using two instruments, typically giving Z' values of 0.75 to 0.85. Several compounds were identified of the 8-hydroxyquinoline chemotype, a known series of inhibitors of the Lys9-specific histone demethylases. The peptide also functions as a substrate for JMJD2A, JMJD2D, and JMJD2E, thus enabling the development of assays for all 3 enzymes to monitor progress in compound selectivity. The assay represents the first report of a RapidFire mass spectrometry assay for an epigenetics target.  相似文献   

3.
4.
5.
6.
7.
Kim TD  Oh S  Shin S  Janknecht R 《PloS one》2012,7(4):e34618
JMJD2D, also known as KDM4D, is a histone demethylase that removes methyl moieties from lysine 9 on histone 3 and from lysine 26 on histone 1.4. Here, we demonstrate that JMJD2D forms a complex with the p53 tumor suppressor in vivo and interacts with the DNA binding domain of p53 in vitro. A luciferase reporter plasmid driven by the promoter of p21, a cell cycle inhibitor and prominent target gene of p53, was synergistically activated by p53 and JMJD2D, which was dependent on JMJD2D catalytic activity. Likewise, overexpression of JMJD2D induced p21 expression in U2OS osteosarcoma cells in the absence and presence of adriamycin, an agent that induces DNA damage. Furthermore, downregulation of JMJD2D inhibited cell proliferation in wild-type and even more so in p53(-/-) HCT116 colon cancer cells, suggesting that JMJD2D is a pro-proliferative molecule. JMJD2D depletion also induced more strongly apoptosis in p53(-/-) compared to wild-type HCT116 cells. Collectively, our results demonstrate that JMJD2D can stimulate cell proliferation and survival, suggesting that its inhibition may be helpful in the fight against cancer. Furthermore, our data imply that activation of p53 may represent a mechanism by which the pro-oncogenic functions of JMJD2D become dampened.  相似文献   

8.
A novel competitive binding assay for protein kinase inhibitors has been developed for high-throughput screening (HTS). Unlike functional kinase assays, which are based on detection of substrate phosphorylation by the enzyme, this novel method directly measures the binding potency of compounds to the kinase ATP binding site through competition with a conjugated binding probe. The binding interaction is coupled to a signal amplification system based on complementation of beta-galactosidase enzyme fragments, a homogeneous, nonisotopic assay technology platform developed by DiscoveRx Corp. In the present study, staurosporine, a potent, nonselective kinase inhibitor, was chemically conjugated to a small fragment of beta-galactosidase (termed ED-SS). This was used as the binding probe to the kinase ATP binding pocket. The binding potencies of several inhibitors with diverse structures were assessed by displacement of ED-SS from the kinase. The assay format was specifically evaluated with GSK3alpha, an enzyme previously screened in a radioactive kinase assay (i.e., measurement of [(33)P]-gamma-ATP incorporation into the kinase peptide substrate). Under optimized assay conditions, nonconjugated staurosporine inhibited ED-SS binding in a concentration-dependent manner with an apparent potency (IC(50)) of 11 nM, which was similar to the IC(50) value determined in a radioactive assay. Furthermore, 9 kinase inhibitors with diverse structures, previously identified from chemical compound library screening, were screened using the competitive binding assay. The potencies in the binding assay were in very good agreement with those obtained previously in the isotopic functional activity assay. The binding assay was adapted for automated HTS using selected compound libraries in a 384-well microtiter plate format. The HTS assay was observed to be highly robust and reproducible (Z' factors > 0.7) with high interassay precision (R(2) > 0.96). Interference of compounds with the beta-galactosidase signal readout was negligible. In conclusion, the DiscoveRx competitive kinase binding assay, termed ED-NSIP trade mark, provides a novel method for screening kinase inhibitors. The format is homogeneous, robust, and amenable to automation. Because there is no requirement for substrate-specific antibodies, the assay is particularly applicable to Ser/Thr kinase assay, in which difficulties in identifying a suitable substrate and antibody preclude development of nonisotopic assays. Although the nonselective kinase inhibitor, staurosporine, was used here, chemically conjugating the ED fragment to other small molecule enzyme inhibitors is also feasible, suggesting that the format is generally applicable to other enzyme systems.  相似文献   

9.
JMJD2A is a JmjC histone demethylase (HDM) that catalyzes the demethylation of di- and trimethylated Lys9 and Lys36 in histone H3 (H3K9me2/3 and H3K36me2/3). Here we present the crystal structures of the JMJD2A catalytic domain in complex with H3K9me3, H3K36me2 and H3K36me3 peptides. The structures reveal that histone substrates are recognized through a network of backbone hydrogen bonds and hydrophobic interactions that deposit the trimethyllysine into the active site. The trimethylated epsilon-ammonium cation is coordinated within a methylammonium-binding pocket through carbon-oxygen (CH...O) hydrogen bonds that position one of the zeta-methyl groups adjacent to the Fe(II) center for hydroxylation and demethylation. Mutations of the residues comprising this pocket abrogate demethylation by JMJD2A, with the exception of an S288A substitution, which augments activity, particularly toward H3K9me2. We propose that this residue modulates the methylation-state specificities of JMJD2 enzymes and other trimethyllysine-specific JmjC HDMs.  相似文献   

10.
JMJD5 is a Jumonji C (JmjC) protein that has been implicated in breast cancer tumorigenesis, circadian rhythm regulation, embryological development, and osteoclastogenesis. Recently, JMJD5 (also called KDM8) has been reported to demethylate dimethylated Lys-36 in histone H3 (H3K36me2), regulating genes that control cell cycle progression. Here, we report high-resolution crystal structures of the human JMJD5 catalytic domain in complex with the substrate 2-oxoglutarate (2-OG) and the inhibitor N-oxalylglycine (NOG). The structures reveal a β-barrel fold that is conserved in the JmjC family and a long shallow cleft that opens into the enzyme's active site. A comparison with other JmjC enzymes illustrates that JMJD5 shares sequence and structural homology with the asparaginyl and histidinyl hydroxylase FIH-1 (factor inhibiting hypoxia-inducible factor 1 [HIF-1]), the lysyl hydroxylase JMJD6, and the RNA hydroxylase TYW5 but displays limited homology to JmjC lysine demethylases (KDMs). Contrary to previous findings, biochemical assays indicate that JMJD5 does not display demethylase activity toward methylated H3K36 nor toward the other methyllysines in the N-terminal tails of histones H3 and H4. Together, these results imply that JMJD5 participates in roles independent of histone demethylation and may function as a protein hydroxylase given its structural homology with FIH-1 and JMJD6.  相似文献   

11.
Protein kinases are among the most commonly targeted groups of molecules in drug discovery today. Despite this, there are few examples of using surface plasmon resonance (SPR) for kinase inhibitor interaction studies, probably reflecting the need for better developed assays for these proteins. In this article, we present a general methodology that uses biosensor technology to study small molecule binding to eight different serine/threonine and tyrosine kinases. Mild immobilization conditions and a carefully composed assay buffer were identified as key success factors. The methodology package consists of direct binding studies of compounds to immobilized kinases, kinase activity assays to confirm inhibitory effects, detailed kinetic analyses of inhibitor binding, and competition assays with ATP for identification of competitive inhibitors. The kinetic assays resolve affinity into the rates of inhibitor binding and dissociation. Therefore, more detailed information on the relation between inhibitor structure and function is obtained. This might be of key importance for the development of effective kinase inhibitors.  相似文献   

12.
A homogeneous time-resolved fluorescence (HTRF)-based binding assay has been established to measure the binding of the histone methyltransferase (HMT) G9a to its inhibitor CJP702 (a biotin analog of the known peptide-pocket inhibitor, BIX-01294). This assay was used to characterize G9a inhibitors. As expected, the peptide-pocket inhibitors decreased the G9a-CJP702 binding signal in a concentration-dependent manner. In contrast, the S-adenosyl-L-methionine (SAM)-pocket compounds, SAM and sinefungin, significantly increased the G9a-CJP702 binding signal, whereas S-adenosyl-L-homocysteine (SAH) showed minimal effect. Enzyme kinetic studies showed that CJP702 is an uncompetitive inhibitor (vs. SAM) that has a strong preference for the E:SAM form of the enzyme. Other data presented suggest that the SAM/sinefungin-induced increase in the HTRF signal is secondary to an increased E:SAM or E:sinefungin concentration. Thus, the G9a-CJP702 binding assay not only can be used to characterize the peptide-pocket inhibitors but also can detect the subtle conformational differences induced by the binding of different SAM-pocket compounds. To our knowledge, this is the first demonstration of using an uncompetitive inhibitor as a probe to monitor the conformational change induced by compound binding with an HTRF assay.  相似文献   

13.
Tip60 is a key member of the MYST family of histone acetyltransferases and involved in a broad spectrum of cellular pathways and disease conditions. So far, small molecule inhibitors of Tip60 and other members of MYST HATs are rarely reported. To discover new small molecule inhibitors of Tip60 as mechanistic tools for functional study and as chemical leads for therapeutic development, we performed virtual screening using the crystal structure of Esa1 (the yeast homolog of Tip60) on a small molecule library database. Radioactive acetylation assays were carried out to further evaluate the virtual screen hits. Several compounds with new structural scaffolds were identified with micromolar inhibition potency for Tip60 from the biochemical studies. Further, computer modeling and kinetic assays suggest that these molecules target the acetyl-CoA binding site in Tip60. These new inhibitors provide valuable chemical hits to develop further potent inhibitors for the MYST HATs.  相似文献   

14.
High-throughput screening (HTS), a major component of lead identification, often utilizes fluorescence-based assay technologies. For example, HTS kinase assays are formatted using a variety of fluorescence-based assay technologies including, but not limited to, dissociation enhanced lanthanide fluoroimmunoassay (DELFIA), time-resolved fluorescence resonance energy transfer (TR-FRET), and fluorescence polarization (FP). These assays offer tremendous advantages such as a nonradioactive format, ease of automation, and excellent reproducibility. Fluorescence-based assays frequently used for lead identification can also be useful for structure activity relationship (SAR) studies during lead optimization. An important issue when assessing an assay to be used for SAR is the ability of the assay to discriminate high-affinity small molecule inhibitors (pM-nM) from low-affinity inhibitors (microM-mM). The purpose of this study was to utilize HTS-friendly assay formats for SAR by developing TR-FRET, FP, and DELFIAassays measuring Src kinase activity and to define the theoretical lower limit of small molecule inhibitor detection achievable with these assay formats. The authors show that 2 homogeneous assay formats, TR-FRET and FP, allowed for the development of Src kinase assays with a lower limit of detection of K(i) = 0.01 nM. This study indicates that assay technologies typically used for HTS can be used during lead optimization by providing quantitative measurements of compound activity critical to driving SAR studies.  相似文献   

15.
16.
17.
Lysine demethylase 1 (LSD1) and Jumonji C domain-containing oxygenase D2C (JMJD2C) participate in regulating the methylation status of histone H3 lysine residues. In some contexts, LSD1 and JMJD2C activity causes enhanced cellular proliferation, which may lead to tumorigenesis. The authors explored the utility of time-resolved fluorescence resonance energy transfer (TR-FRET) immunoassays, which employed peptides consisting of the first 21 amino acids of histone H3 in which lysine 4 (H3K4) or lysine 9 (H3K9) was methylated (me) to quantify LSD1 and JMJD2C activity. The LSD1 assay monitored demethylation of the H3K4me1 peptide using an antibody that recognizes H3K4me1 but not the unmethylated peptide product. The JMJD2C assay measured demethylation of H3K9me3 with an antibody that selectively recognizes H3K9me2. The optimized conditions resulted in robust assays (Z' > 0.7) that required only 3 to 6 nM of enzyme in a reaction volume of 6 to 10 μL. These assays were used to compare the activity of different LSD1 constructs and to determine the apparent K(m) of each JMJD2C substrate. Finally, both assays were used in a high-throughput setting for identifying demethylase inhibitors. Compounds discovered by these TR-FRET methods may lead to powerful tools for ascertaining the roles of demethylases in a cellular context and ultimately for potential cancer treatments.  相似文献   

18.
Poly(ADP-ribose) (PAR) polymers are transient post-translational modifications, and their formation is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. A number of PARP inhibitors are in advanced clinical development for BRCA-mutated breast cancer, and olaparib has recently been approved for BRCA-mutant ovarian cancer; however, there has already been evidence of developed resistance mechanisms. Poly(ADP-ribose) glycohydrolase (PARG) catalyzes the hydrolysis of the endo- and exo-glycosidic bonds within the PAR polymers. As an alternative strategy, PARG is a potentially attractive therapeutic target. There is only one PARG gene, compared with 17 known PARP family members, and therefore a PARG inhibitor may have wider application with fewer compensatory mechanisms. Prior to the initiation of this project, there were no known existing cell-permeable small molecule PARG inhibitors for use as tool compounds to assess these hypotheses and no suitable high-throughput screening (HTS)-compatible biochemical assays available to identify start points for a drug discovery project. The development of this newly described high-throughput homogeneous time-resolved fluorescence (HTRF) assay has allowed HTS to proceed and, from this, the identification and advancement of multiple validated series of tool compounds for PARG inhibition.  相似文献   

19.
Development of drug-resistant mutations has been a major problem with all currently developed Hepatitis C Virus (HCV) NS3/4A inhibitors, including the two FDA approved drugs, significantly reducing the efficacy of these inhibitors. The high incidence of drug-resistance mutations and the limited utility of these inhibitors against only genotype 1 highlight the need for novel, broad-spectrum HCV therapies. Here we used high-throughput screening (HTS) to identify low molecular weight inhibitors against NS3/4A from multiple genotypes. A total of 40,967 compounds from four structurally diverse molecular libraries were screened by HTS using fluorescence-based enzymatic assays, followed by an orthogonal binding analysis using surface plasmon resonance (SPR) to eliminate false positives. A novel small molecule compound was identified with an IC50 value of 2.2 µM against the NS3/4A from genotype 1b. Mode of inhibition analysis subsequently confirmed this compound to be a competitive inhibitor with respect to the substrate, indicating direct binding to the protease active site, rather than to the allosteric binding pocket that was discovered to be the binding site of a few recently discovered small molecule inhibitors. This newly discovered inhibitor also showed promising inhibitory activity against the NS3/4As from three other HCV genotypes, as well as five common drug-resistant mutants of genotype 1b NS3/4A. The inhibitor was selective for NS3 from multiple HCV genotypes over two human serine proteases, and a whole cell lysate assay confirmed inhibitory activity in the cellular environment. This compound provides a lead for further development of potentially broader spectrum inhibitors.  相似文献   

20.
The Ubiquitin Proteasome Pathway (UPP) has become a target rich pathway for therapeutic intervention as its role in pathogenic disease is better understood. In particular many E3 ligases within this pathway have been implicated in cancer, inflammation and metabolic diseases. It has been of great interest to develop biochemical assays to identify inhibitors of catalytic E3 ubiquitination activity as a means of abrogating the disease mechanism. Here we describe a homogeneous biochemical assay that utilizes native ubiquitin and Tandem-repeated Ubiquitin-Binding Entities (TUBEs) as a detection technology for ubiquitination activity. We developed a TUBEs based proximity AlphaLisa? assay for Mdm2, which is an E3 ligase that negatively regulates p53 tumor suppressor protein. We further demonstrate that this assay strategy or design can also be applied to the development of assays to detect autoubiquitination of other E3 ligases that are also of interest for therapeutic intervention. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号