首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phenotypic changes in injured livers involve complex network of genes whose interplays may lead to fibrosis and cirrhosis, a major risk of hepatocellular carcinoma. Gene expression profiles in fibrotic livers were analyzed by using cDNA microarray, hierarchical clustering and gene ontology. Analyses of a major cluster of upregulated genes in cirrhosis identified a new set of genes involved in DNA repair and damage. The upregulation of DNA repair genes was confirmed by real-time quantitative polymerase chain reaction and associated with necroinflammatory activity (P<0.001). Increased DNA repair activity in cirrhosis with inflammatory activity may reflect increased DNA damages as a consequence of chronic liver injury.  相似文献   

3.
We have cloned the cDNA for the eighth human DNA polymerase, DNA polymerase θ. The human cDNA encodes a putative DNA polymerase of 1762 amino acids with a calculated molecular mass of 198 kDa. The derived protein sequence is homologous to the Drosophila melanogaster mus308 protein product, a putative DNA polymerase-helicase involved in repair of interstrand crosslinks. The C-terminal region contains the canonical DNA polymerase motifs A, B, and C found in the family A type of DNA polymerases, which includes Escherichia coli polymerase I. The N-terminal region contains a putative ATP binding domain but not motifs for a helicase. The gene was mapped by radiation hybrid analysis to chromosome 3q within an interval flanked by proximal marker D3S1303 and distal marker D3S3576 and, based on proximity to a gene that has been mapped cytogenetically, within band 3q13.31.  相似文献   

4.
The involvement of DNA polymerases alpha, beta, and gamma in DNA repair synthesis was investigated in subcellular preparations of cultured hamster and human cells. A variety of DNA damaging agents, including bleomycin, neocarzinostatin, UV irradiation, and alkylating agents, were utilized to induce DNA repair. The sensitivity of repair synthesis, as well as replicative synthesis and purified DNA polymerase beta activity, to inhibition by the DNA polymerase inhibitors dideoxythymidine triphosphate, aphidicolin, cytosine arabinoside triphosphate, and N-ethylmaleimide was determined. No evidence was obtained for a major role of polymerase gamma in any type of repair synthesis. In both hamster and human cells, the sensitivity of bleomycin- and neocarzinostatin-induced repair synthesis to ddTTP inhibition was essentially identical with that observed for purified polymerase beta, indicating these repair processes proceeded through a mechanism utilizing polymerase beta. Repair synthesis induced by UV irradiation and alkylating agents was not sensitive to ddTTP, indicating repair of these lesions occurred through a pathway primarily utilizing a different DNA polymerase; presumably polymerase alpha. However, replicative synthesis was much more sensitive to polymerase alpha inhibitors than was repair synthesis induced by UV irradiation or alkylating agents. Neither the amount of DNA damage nor the amount of induced repair synthesis influenced the degree to which the different DNA polymerases were involved in repair synthesis. The possibility that "patch size" or the actual type of DNA damage determines the extent to which different polymerases participate in DNA repair synthesis is discussed.  相似文献   

5.
There exist two major base excision DNA repair (BER) pathways, namely single-nucleotide or “short-patch” (SP-BER), and “long-patch” BER (LP-BER). Both pathways appear to be involved in the repair of small base lesions such as uracil, abasic sites and oxidized bases. In addition to DNA polymerase β (Polβ) as the main BER enzyme for repair synthesis, there is evidence for a minor role for DNA polymerase lambda (Polλ) in BER. In this study we explore the potential contribution of Polλ to both SP- and LP-BER in cell-free extracts. We measured BER activity in extracts of mouse embryonic fibroblasts using substrates with either a single uracil or the chemically stable abasic site analog tetrahydrofuran residue. The addition of purified Polλ complemented the pronounced BER deficiency of POLB-null cell extracts as efficiently as did Polβ itself. We have developed a new approach for determining the relative contributions of SP- and LP-BER pathways, exploiting mass-labeled nucleotides to distinguish single- and multinucleotide repair patches. Using this method, we found that uracil repair in wild-type and in Polβ-deficient cell extracts supplemented with Polλ was ∼80% SP-BER. The results show that recombinant Polλ can contribute to both SP- and LP-BER. However, endogenous Polλ, which is present at a level ˜50% that of Polβ in mouse embryonic fibroblasts, appears to make little contribution to BER in extracts. Thus Polλ in cells appears to be under some constraint, perhaps sequestered in a complex with other proteins, or post-translationally modified in a way that limits its ability to participate effectively in BER.  相似文献   

6.

Background

The chimeric sequences produced by phi29 DNA polymerase, which are named as chimeras, influence the performance of the multiple displacement amplification (MDA) and also increase the difficulty of sequence data process. Despite several articles have reported the existence of chimeric sequence, there was only one research focusing on the structure and generation mechanism of chimeras, and it was merely based on hundreds of chimeras found in the sequence data of E. coli genome.

Method

We finished data mining towards a series of Next Generation Sequencing (NGS) reads which were used for whole genome haplotype assembling in a primary study. We established a bioinformatics pipeline based on subsection alignment strategy to discover all the chimeras inside and achieve their structural visualization. Then, we artificially defined two statistical indexes (the chimeric distance and the overlap length), and their regular abundance distribution helped illustrate of the structural characteristics of the chimeras. Finally we analyzed the relationship between the chimera type and the average insertion size, so that illustrate a method to decrease the proportion of wasted data in the procedure of DNA library construction.

Results/Conclusion

131.4 Gb pair-end (PE) sequence data was reanalyzed for the chimeras. Totally, 40,259,438 read pairs (6.19%) with chimerism were discovered among 650,430,811 read pairs. The chimeric sequences are consisted of two or more parts which locate inconsecutively but adjacently on the chromosome. The chimeric distance between the locations of adjacent parts on the chromosome followed an approximate bimodal distribution ranging from 0 to over 5,000 nt, whose peak was at about 250 to 300 nt. The overlap length of adjacent parts followed an approximate Poisson distribution and revealed a peak at 6 nt. Moreover, unmapped chimeras, which were classified as the wasted data, could be reduced by properly increasing the length of the insertion segment size through a linear correlation analysis.

Significance

This study exhibited the profile of the phi29MDA chimeras by tens of millions of chimeric sequences, and helped understand the amplification mechanism of the phi29 DNA polymerase. Our work also illustrated the importance of NGS data reanalysis, not only for the improvement of data utilization efficiency, but also for more potential genomic information.  相似文献   

7.
8.
9.
For many years, Taq polymerase has served as the stalwart enzyme in the PCR amplification of DNA. However, a major limitation of Taq is its inability to amplify damaged DNA, thereby restricting its usefulness in forensic applications. In contrast, Y-family DNA polymerases, such as Dpo4 from Sulfolobus solfataricus, can traverse a wide variety of DNA lesions. Here, we report the identification and characterization of five novel thermostable Dpo4-like enzymes from Acidianus infernus, Sulfolobus shibatae, Sulfolobus tengchongensis, Stygiolobus azoricus and Sulfurisphaera ohwakuensis, as well as two recombinant chimeras that have enhanced enzymatic properties compared with the naturally occurring polymerases. The Dpo4-like polymerases are moderately processive, can substitute for Taq in PCR and can bypass DNA lesions that normally block Taq. Such properties make the Dpo4-like enzymes ideally suited for the PCR amplification of damaged DNA samples. Indeed, by using a blend of Taq and Dpo4-like enzymes, we obtained a PCR amplicon from ultraviolet-irradiated DNA that was largely unamplifyable with Taq alone. The inclusion of thermostable Dpo4-like polymerases in PCRs, therefore, augments the recovery and analysis of lesion-containing DNA samples, such as those commonly found in forensic or ancient DNA molecular applications.  相似文献   

10.
Many mutagens and carcinogens damage DNA and elicit repair synthesis in cells. In the present study we report that alkylation of the DNA of Escherichia coli that have been made permeable to nucleotides by toluene treatment results in the expression of a DNA polymerase I-directed repair synthesis. The advantage of the system described here is that it permits measurement of only DNA polymerase I-directed repair synthesis and serves as a simple, rapid method for determining the ability of a given chemical to elicit “excision-repair” in bacteria.DNA ligation is intentionally prevented in our system by addition of the inhibitor nicotinamide mononucleotide. In the absence of DNA ligase activity, nick translation is extensive and an “exaggerated” repair synthesis occurs. This amplification of repair synthesis is unique for DNA polymerase I since it is not observed in mutant cells deficient in this polymerase. DNA ligase apparently controls the extent of nucleotide replacement by this repair enzyme through its ability to rejoin “nicks” thereby terminating the DNA elongation process.The nitrosoamides N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea, as well as the nitrosoamidines N-methyl-N′-nitro-N-nitrosoguanidine and N-ethyl-N′-nitro-N-nitrosoguanidine, elicit DNA polymerase I-directed repair synthesis. Methyl methanesulphonate is especially potent in this regard, while its ethyl derivative, ethyl methanesulphonate, is a poor inducer of DNA polymerase I activity in permeabilized cells.  相似文献   

11.
The eukaryotic DNA polymerase processivity factor, proliferating cell nuclear antigen, is an essential component in the DNA replication and repair machinery. In Drosophila melanogaster, we cloned a second PCNA cDNA that differs from that encoded by the gene mus209 (for convenience called DmPCNA1 in this article). The second PCNA cDNA (DmPCNA2) encoded a 255 amino acid protein with 51.7% identity to DmPCNA1, and was ubiquitously expressed during Drosophila development. DmPCNA2 was localized in nuclei as a homotrimeric complex and associated with Drosophila DNA polymerase delta and epsilonin vivo. Treatment of cells with methyl methanesulfonate or hydrogen peroxide increased the amount of both DmPCNA2 and DmPCNA1 associating with chromatin, whereas exposure to UV light increased the level of association of only DmPCNA1. Our observations suggest that DmPCNA2 may function as an independent sliding clamp of DmPCNA1 when DNA repair occurs.  相似文献   

12.
The contribution of PCR artifacts to 16S rRNA gene sequence diversity from a complex bacterioplankton sample was estimated. Taq DNA polymerase errors were found to be the dominant sequence artifact but could be constrained by clustering the sequences into 99% sequence similarity groups. Other artifacts (chimeras and heteroduplex molecules) were significantly reduced by employing modified amplification protocols. Surprisingly, no skew in sequence types was detected in the two libraries constructed from PCR products amplified for different numbers of cycles. Recommendations for modification of amplification protocols and for reporting diversity estimates at 99% sequence similarity as a standard are given.  相似文献   

13.
Multiple Displacement Amplification (MDA) of DNA using φ29 (phi29) DNA polymerase amplifies DNA several billion-fold, which has proved to be potentially very useful for evaluating genome information in a culture-independent manner. Whole genome sequencing using DNA from a single prokaryotic genome copy amplified by MDA has not yet been achieved due to the formation of chimeras and skewed amplification of genomic regions during the MDA step, which then precludes genome assembly. We have hereby addressed the issue by using 10 ng of genomic Vibrio cholerae DNA extracted within an agarose plug to ensure circularity as a starting point for MDA and then sequencing the amplified yield using the SOLiD platform. We successfully managed to assemble the entire genome of V. cholerae strain LMA3984-4 (environmental O1 strain isolated in urban Amazonia) using a hybrid de novo assembly strategy. Using our method, only 178 out of 16,713 (1%) of contigs were not able to be inserted into either chromosome scaffold, and out of these 178, only 3 appeared to be chimeras. The other contigs seem to be the result of template-independent non-specific amplification during MDA, yielding spurious reads. Extraction of genomic DNA within an agarose plug in order to ensure circularity of the extracted genome might be key to minimizing amplification bias by MDA for WGS.  相似文献   

14.
The roles of DNA polymerases alpha and beta in DNA replication and repair synthesis were studied in permeable animal cells, using different agents to induce repair synthesis. DNA polymerase inhibitors were used to investigate which polymerases were involved in repair synthesis and in replication. Polymerase alpha was responsible for replication. On the other hand, both polymerases alpha and beta were involved in DNA repair synthesis; the extent to which each polymerase participated depended primarily on the agent used to damage DNA. Polymerase beta was primarily responsible for repair synthesis induced by bleomycin or neocarzinostatin, whereas polymerase alpha played a more prominent role in repair synthesis indiced by N-methyl-N'-nitro-N-nitrosoguanidine or N-nitrosomethyl urea. More DNA damage was induced by the alkylating agents than by bleomycin or neocarzinostatin, suggesting that the extent of involvement of polymerase alpha or beta in DNA repair synthesis is related to the amount or type of DNA damage. In addition, salt concentration was found to have little or no effect on the results obtained with the DNA polymerase inhibitors. Our findings provide an explanation for conflicting reports in the literature concerning the roles of DNA polymerases alpha and beta in DNA repair.  相似文献   

15.
Involvement of bacteriophage T4 genes in radiation repair   总被引:9,自引:0,他引:9  
One interpretation of Ebisuzaki's (1966) observation that the functional survival of certain early phage T4 genes is identical in v+ and v -infected cells is that the product of the early gene being studied is essential for the successful completion of excision repair (which is known to be mediated by the v gene). An experiment designed to test this hypothesis is described, with results which fully support the idea. Assuming then that this interpretation is valid, it became possible to determine the involvement in excision repair of a much wider range of early genes by establishing whether or not the v allele affects their functional survival. In addition a comparable series of experiments was performed with phages carrying the u.v.-sensitive y mutation which is known to mediate a quite different type of repair in T4-infected cells.The results indicate that genes 1, 30, 42, 43 and 56 are involved in excision repair, but not genes 32, 41, 43 or 44. All these genes are however involved in y-mediated repair. It appears therefore that this latter repair system (which bears some resemblance to that controlled by the rec genes in bacteria) depends on normal phage DNA synthesis for its completion. However the repair synthesis following the excision of pyrimidine dimers in u.v.-irradiated T4 DNA seems distinct from normal DNA synthesis in that it does not involve certain of the early phage genes, and in particular does not utilize the DNA polymerase coded by gene 43. It is suggested that the polymerase activity associated with this repair synthesis is provided by the bacterial Kornberg polymerase pol I.  相似文献   

16.
Chlamydomonas reinhardtii is a prospective model system for understanding molecular mechanisms associated with DNA repair in plants and algae. To explore this possibility, we have developed an in vitro repair system from C. reinhardtii cell-free extracts that can efficiently repair UVC damage (Thymine-dimers) in the DNA. We observed that excision repair (ER) synthesis based nucleotide incorporation, specifically in UVC damaged supercoiled (SC) DNA, was followed by ligation of nicks. Photoreactivation efficiently competed out the ER in the presence of light. In addition, repair efficiency in cell-free extracts from ER deficient strains was several fold lower than that of wild-type cell extract. Interestingly, the inhibitor profile of repair DNA polymerase involved in C. reinhardtii in vitro ER system was akin to animal rather than plant DNA polymerase. The methodology to prepare repair competent cell-free extracts described in the current study can aid further molecular characterization of ER pathway in C. reinhardtii.  相似文献   

17.
Enzymatic repair of an expanded genetic information system   总被引:2,自引:1,他引:1       下载免费PDF全文
The excision repair machinery of a thermophilic bacterium has been shown to recognize and repair an expanded genetic base pair. Native Thermus aquaticus DNA polymerase will remove a mispaired natural base and replace it with a non-natural base to form an expanded base pair. In addition, DNA ligase will recognize a nick formed by polymerase between two non-natural base pairs and covalently attach the two strands, thus demonstrating complete repair of a bifurcated base-paired model duplex. These results add evidence to the idea that the cellular replication and repair machinery of an organism containing an expanded genetic alphabet could recognize and properly repair a site containing consecutive unnatural bases.  相似文献   

18.
The antineoplastic prodrug Cloretazine exerts its cytotoxicity via a synergism between 2-chloroethylating and carbamoylating activities that are cogenerated upon activation in situ. Cloretazine is reported here to inhibit the nucleotidyl-transferase activity of purified human DNA polymerase β (Pol β), a principal enzyme of DNA base excision repair (BER). The 2-chloroethylating activity of Cloretazine alkylates DNA at the O6 position of guanine bases resulting in 2-chloroethoxyguanine monoadducts, which further react to form cytotoxic interstrand DNA crosslinks. Alkylated DNA is often repaired via BER in vivo. Inhibition of the polymerase activity of Pol β may account for some of the synergism between Cloretazine’s two reactive subspecies in cytotoxicity assays. This inhibition was only observed using agents with carbamoylating activity. Furthermore, while therapeutically relevant concentrations of Cloretazine inhibited the polymerase activity of Pol β, the enzyme’s lyase activity, which may also participate in BER, was not significantly inhibited.  相似文献   

19.
We have used the lacZ reversion assay to study the mutation spectra induced by the Escherichia coli chromosomal umuDC operon and of its two plasmid-borne analogues impCAB and mucAB following exposure of cells to UV light and methyl methane-sulfonate (MMS). We have shown that the impCAB, mucAB and umuDC operons all produce a similar response to UV light which results almost exclusively in AT → GC transitions. However, we found that the three operons produced different responses to alkylating agents. We found that with MMS the chromosomal umuDC operon produced almost exclusively AT → GC transitions, whilst both mucAB and impCAB produced predominantly transversions. In the case of the impCAB operon the mutation spectrum contained more AT → TA than GC → TA transversions; this balance was reversed with mucAB. The effect of the copy number of the error-prone DNA repair operons upon the mutagenic spectra was also studied. The results obtained suggest that the copy number of the imp operon does not greatly affect the specificity of base substitutions observed. However, an increase in the copy number of the umuDC operon greatly affected the specificity of base substitution, such that virtually no transitions were produced and the spectrum was dominated by GC/AT → TA transversions. It appears that the three error-prone DNA repair operons impCAB, mucAB and umuDC, despite showing strong structural and functional homologies, can display major differences in the spectrum of base changes induced during mutagenesis. We propose that the type of misincorporation/chain extension which DNA polymerase III is allowed to synthesize on a damaged DNA template is extremely sensitive to both the amount and type of error-prone repair proteins present. The modulation of these events by the different proteins can result in widely different mutagenic changes in the repaired DNA.  相似文献   

20.
Archaeal family-B DNA polymerases bind tightly to uracil and hypoxanthine (the deamination products of cytosine and adenine), resulting in profound inhibition of DNA replication. Investigation of the mechanism of inhibition, using single-turnover kinetics with polymerase in excess of DNA, indicated that deoxy-NTPs were efficiently bound to the polymerase-DNA complex but very poorly incorporated into the extending chain. Addition of the processivity factor proliferating cell nuclear antigen (PCNA) resulted in increased affinity of the polymerase for all primer-templates, producing extremely tight complexes when uracil (Kd = 16 pM) or hypoxanthine (Kd = 65 pM) was present. Analytical ultracentrifugation confirmed the stability of these complexes and revealed a polymerase/PCNA/DNA stoichiometry of 1:1:1. However, PCNA had no influence on the ability of the polymerase to read through uracil and hypoxanthine, the same kinetic parameters being observed with or without the processivity factor. The specificity constants determined using single-turnover kinetics showed that uracil and hypoxanthine slowed the polymerase by factors of ∼ 5000 and 3000, respectively. Uracil and hypoxanthine are removed from DNA by base excision repair, initiated by uracil-DNA glycosylase and endonuclease V, respectively. Both enzymes are profoundly inhibited by the simultaneous binding of both PCNA and polymerase to primer-templates, with polymerase alone being much less effective. Thus, when the PCNA-polymerase complex encounters uracil/hypoxanthine in DNA templates, base excision repair is switched off, protecting the complex from a repair pathway that is dangerous in the context of single-stranded DNA formed during replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号