首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The required performance of an analytical method depends on the purpose for which it will be used. As a methodology matures, it may find new application, and the performance demands placed on the method can increase. Sedimentation velocity analytical ultracentrifugation (SV-AUC) has a long and distinguished history with important contributions to molecular biology. Now the technique is transitioning into industrial settings, and among them, SV-AUC is now used to quantify the amount of protein aggregation in biopharmaceutical protein products, often at levels less than 1% of the total protein mass. In this paper, we review recent advances to SV methodology which have been shown to improve quantitation of protein aggregation. Then we discuss the performance of the SV method in its current state, with emphasis on the precision and quantitation limit of the method, in the context of existing industrial guidance on analytical method performance targets for quantitative methods.  相似文献   

2.
Sedimentation velocity analytical ultracentrifugation (SV-AUC) coupled with direct computational fitting of the observed concentration profiles (sedimentating boundary) have been developed and widely used for the characterization of macromolecules and nanoparticles in solution. In particular, size distribution analysis by SV-AUC has become a reliable and essential approach for the characterization of biopharmaceuticals including therapeutic antibodies. In this review, we describe the importance and advantages of SV-AUC for studying biopharmaceuticals, with an emphasis on strategies for sample preparation, data acquisition, and data analysis. Recent discoveries enabled by AUC with a fluorescence detection system and potential future applications are also discussed.  相似文献   

3.
In this study, we investigated the theoretical potential of size exclusion chromatography (SEC) for resolving mixtures of protein aggregates (of various sizes and shapes) produced in the generation of amyloid fibrils. We present our findings in the form of an equilibrium partition model. We first review the general characteristics of SEC and discuss the physicochemical features affecting solute transport and partition. We then develop new methods for estimating the transport and partition coefficients of protein aggregates on the basis of their molecular dimensions and the SEC column properties. We detail how these calculated properties can be used to estimate the likely resolving power of an SEC column. Model predictions were found to be in general agreement with experimental data gained from the measurement of the elution profile of sheared amyloid fibrils prepared from bovine insulin and passed through a Superose 6 precision SEC column. Our formalism should provide a basic appreciation of the competing factors at work and allow an informed choice to be made for optimal selection of SEC column medium to separate a desired size range of aggregate.  相似文献   

4.
High-performance liquid chromatography (HPLC) with UV, circular dichroism (CD) and intrinsic fluorescence detection was applied to monitor conformational properties of recombinant human interferon alpha2b when performing size exclusion chromatography (SEC) and reversed-phase HPLC (RP-HPLC). In this way native conditions during SEC and structural changes of the protein during RP-HPLC were demonstrated. These results were confirmed by stand-alone fluorescence and CD measurements. With respect to HPLC tandem detection, the fluorescence detector compared favourably to the UV and CD detector regarding linearity, sensitivity and selectivity. SEC combined with intrinsic fluorescence scanning detection permits conformational analysis of small amounts of aggregates in the presence of excess native monomeric protein. In conclusion, HPLC with on-line UV and intrinsic fluorescence detection provides a promising concept for analysing the amount and conformational properties of a biopharmaceutical and its impurities.  相似文献   

5.
The production of large numbers of highly purified proteins for X-ray crystallography is a significant bottleneck in structural genomics. At the Joint Center for Structural Genomics (JCSG; http://www.jcsg.org), specific automated protein expression, purification, and analytical methods are being utilized to study the proteome of Thermotoga maritima. Anion exchange and size exclusion chromatography (SEC), intended for the production of highly purified proteins, have been automated and the procedures are described here in detail. Analytical SEC has been included as a standard quality control test. A biological unit (BU) is the macromolecule that has been proven or is presumed to be functional. Correct assignment of BUs from protein structures can be difficult. BU predictions obtained via the Protein Quaternary Structure file server (PQS; http://pqs.ebi.ac.uk/) were compared to SEC data for 16 representative T. maritima proteins whose structures were solved at the JCSG, revealing an inconsistency in five cases. Herein, we report that SEC can be used to validate or disprove PQS-derived oligomeric models. A substantial amount of associated SEC and structural data should enable us to use certain PQS parameters to gauge the accuracy of these computational models and to generally improve their predictions.  相似文献   

6.
The serotonin transporter (SERT) maintains serotonergic neurotransmission via rapid reuptake of serotonin from the synaptic cleft. SERT relies exclusively on the coat protein complex II component SEC24C for endoplasmic reticulum (ER) export. The closely related transporters for noradrenaline and dopamine depend on SEC24D. Here, we show that discrimination between SEC24C and SEC24D is specified by the residue at position +2 downstream from the ER export motif (607RI608 in SERT). Substituting Lys610 with tyrosine, the corresponding residue found in the noradrenaline and dopamine transporters, switched the SEC24 isoform preference: SERT-K610Y relied solely on SEC24D to reach the cell surface. This analysis was extended to other SLC6 (solute carrier 6) transporter family members: siRNA-dependent depletion of SEC24C, but not of SEC24D, reduced surface levels of the glycine transporter-1a, the betaine/GABA transporter and the GABA transporter-4. Experiments with dominant negative versions of SEC24C and SEC24D recapitulated these findings. We also verified that the presence of two ER export motifs (in concatemers of SERT and GABA transporter-1) supported recruitment of both SEC24C and SEC24D. To the best of our knowledge, this is the first report to document a change in SEC24 specificity by mutation of a single residue in the client protein. Our observations allowed for deducing a rule for SLC6 family members: a hydrophobic residue (Tyr or Val) in the +2 position specifies interaction with SEC24D, and a hydrophilic residue (Lys, Asn, or Gln) recruits SEC24C. Variations in SEC24C are linked to neuropsychiatric disorders. The present findings provide a mechanistic explanation. Variations in SEC24C may translate into distinct surface levels of neurotransmitter transporters.  相似文献   

7.
The translocation of secretory and membrane proteins across the endoplasmic reticulum (ER) membrane is mediated by co-translational (via the signal recognition particle (SRP)) and post-translational mechanisms. In this study, we investigated the relative contributions of these two pathways in trypanosomes. A homologue of SEC71, which functions in the post-translocation chaperone pathway in yeast, was identified and silenced by RNA interference. This factor is essential for parasite viability. In SEC71-silenced cells, signal peptide (SP)-containing proteins traversed the ER, but several were mislocalized, whereas polytopic membrane protein biogenesis was unaffected. Surprisingly trypanosomes can interchangeably utilize two of the pathways to translocate SP-containing proteins except for glycosylphosphatidylinositol-anchored proteins, whose level was reduced in SEC71-silenced cells but not in cells depleted for SRP68, an SRP-binding protein. Entry of SP-containing proteins to the ER was significantly blocked only in cells co-silenced for the two translocation pathways (SEC71 and SRP68). SEC63, a factor essential for both translocation pathways in yeast, was identified and silenced by RNA interference. SEC63 silencing affected entry to the ER of both SP-containing proteins and polytopic membrane proteins, suggesting that, as in yeast, this factor is essential for both translocation pathways in vivo. This study suggests that, unlike bacteria or other eukaryotes, trypanosomes are generally promiscuous in their choice of mechanism for translocating SP-containing proteins to the ER, although the SRP-independent pathway is favored for glycosylphosphatidylinositol-anchored proteins, which are the most abundant surface proteins in these parasites.  相似文献   

8.
Host-cell proteins (HCPs) and high molecular weight (HMW) species have historically been treated as independent classes of impurities in the downstream processing of monoclonal antibodies (mAbs), but recent indications suggest that they may be partially linked. We have explored this connection with a shotgun proteomic analysis of HMW impurities that were isolated from harvest cell culture fluid (HCCF) and protein A eluate using size-exclusion chromatography (SEC). As part of the proteomic analysis, a cross-digest study was performed in which samples were analyzed using both the standard and native digest techniques to enable a fair comparison between bioprocess pools. This comparison reveals that the HCP profiles of HCCF and protein A eluate overlap substantially more than previous work has suggested, because hundreds of HCPs are conserved in aggregates that may be up to ~50 nm in hydrodynamic radius and that persist through the protein A capture step. Quantitative SWATH proteomics suggests that the majority of the protein A eluate's HCP mass is found in such aggregates, and this is corroborated by ELISA measurements on SEC fractions. The SWATH data also show that intra-aggregate concentrations of individual HCPs are positively correlated between aggregates that were isolated from HCCF and protein A eluate, and species that have generally been considered difficult to remove tend to be more concentrated than their counterparts. These observations support prior hypotheses regarding aggregate-mediated HCP persistence through protein A chromatography and highlight the importance of this persistence mechanism.  相似文献   

9.
Sedimentation velocity analytical ultracentrifugation (SV-AUC) has emerged in the biopharmaceutical industry as a technique to detect small quantities of protein aggregates. However, the limits of detection and quantitation of these aggregates are not yet well understood. Although diverse factors (molecule, instrument, technique, and software dependent) preclude an all-encompassing measurement of these limits for the complete system, it is possible to use simulated data to determine the quantitation limits of the data analysis software aspect. The current study examines the performance of the SEDFIT/c(s) data analysis tool with simulated antibody monomer/dimer and monomer/aggregate systems. Under completely ideal conditions (zero noise, known meniscus, and shape factor homogeneity), the software limit of quantitation was 0.01% for the monomer/aggregate system and 0.03% for the less well-resolved monomer/dimer system. Under more realistic conditions (0.005 OD root mean square [RMS] noise, shape factor variability, and long solution column), the software limits of quantitation were 0.2 and 0.6% (0.002 and 0.006 OD) for the monomer/aggregate and monomer/dimer systems, respectively. Interestingly, diminished quantitation accuracy at very low levels of oligomer was not accompanied by deterioration of fit quality (as measured by root mean square deviation [RMSD] and residuals bitmap images).  相似文献   

10.
The gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is degraded in the vacuole when glucose is added to glucose-starved cells. Before it is delivered to the vacuole, however, FBPase is imported into intermediate carriers called Vid (vacuole import and degradation) vesicles. Here, using biochemical and genetic approaches, we identified a requirement for SEC28 in FBPase degradation. SEC28 encodes the epsilon-COP subunit of COPI (coat protein complex I) coatomer proteins. When SEC28 and other coatomer genes were mutated, FBPase degradation was defective and FBPase association with Vid vesicles was impaired. Coatomer proteins were identified as components of Vid vesicles, and they formed a protein complex with a Vid vesicle-specific protein, Vid24p. Furthermore, Vid24p association with Vid vesicles was impaired when coatomer genes were mutated. Kinetic studies indicated that Sec28p traffics to multiple locations. Sec28p was in Vid vesicles, endocytic compartments, and the vacuolar membrane in various mutants that block the FBPase degradation pathway. Sec28p was also found in vesicles adjacent to the vacuolar membrane in the ret2-1 coatomer mutant. We propose that Sec28p resides in Vid vesicles, and these vesicles converge with the endocytic pathway. After fusion, Sec28p is distributed on the vacuolar membrane, where it concentrates on vesicles that pinch off from this organelle. FBPase also utilizes the endocytic pathway for transport to the vacuole, as demonstrated by its presence in endocytic compartments in the Deltavph1 mutant. Taken together, our results indicate a strong connection between the Vid trafficking pathway and the endocytic pathway.  相似文献   

11.
Based on their respective antitumor and thrombolytic activities, the superantigen staphylococcal enterotoxin C2 (SEC2) and staphylokinase (Sak) were chosen for the construction of the novel chimeric proteins Sak-linker- SEC2 and SEC2-linker-Sak using a linker composed of nine Ala residues. Both chimeric proteins possessed nearly the same PBMC proliferation stimulating activity and antitumor activity as SEC2 and thrombolytic activity as Sak. Neither the SEC2 or Sak component of each chimeric protein affected the activity of the other component. The results presented in this study provide a possible strategy to prevent and cure tumor thrombus.  相似文献   

12.
As part of a study to purify the internal domain of HER2 (ICD) from recombinant expression, through metal immobilised affinity chromatography (IMAC), we encountered a contaminant, SlyD, a 29 kDa native E. coli protein. SlyD is a recurrent contaminant, with a histidine rich domain enabling binding to IMAC columns and thus co-elution with the target protein. Research has been carried out on this protein and its purification, however, no work mentions how to treat it as a true contaminant or describe procedures to isolate it from target proteins. In this report, we described a two-step chromatographic method for the purification of ICD, including IMAC as a capture step and size exclusion chromatography (SEC) as a polishing step. IMAC allowed us to purify ICD from bacterial crude with SlyD co-eluting. SEC then allowed us to resolve ICD from SlyD and achieve a purity greater than 95% for ICD. However, this method has been developed to accommodate any protein whose molecular weight is different enough from SlyD to be separated by SEC.  相似文献   

13.
14.
The SEC14SC gene encodes the phosphatidylinositol/phosphatidylcholine transfer protein (PI/PC-TP) of Saccharomyces cerevisiae. The SEC14SC gene product (SEC14pSC) is associated with the Golgi complex as a peripheral membrane protein and plays an essential role in stimulating Golgi secretory function. We report the characterization of SEC14YL, the structural gene for the PI/PC-TP of the dimorphic yeast Yarrowia lipolytica. SEC14YL encodes a primary translation product (SEC14YL) that is predicted to be a 497-residue polypeptide of which the amino- terminal 300 residues are highly homologous to the entire SEC14pSC, and the carboxyl-terminal 197 residues define a dispensible domain that is not homologous to any known protein. In a manner analogous to the case for SEC14pSC, SEC14pYL localizes to punctate cytoplasmic structures in Y. lipolytica that likely represent Golgi bodies. However, SEC14pYL is neither required for the viability of Y. lipolytica nor is it required for secretory pathway function in this organism. This nonessentiality of SEC14pYL for growth and secretion is probably not the consequence of a second PI/PC-TP activity in Y. lipolytica as cell-free lysates prepared from delta sec14YL strains are devoid of measurable PI/PC-TP activity in vitro. Phenotypic analyses demonstrate that SEC14pYL dysfunction results in the inability of Y. lipolytica to undergo the characteristic dimorphic transition from the yeast to the mycelial form that typifies this species. Rather, delta sec14YL mutants form aberrant pseudomycelial structures as cells enter stationary growth phase. The collective data indicate a role for SEC14pYL in promoting the differentiation of Y. lipolytica cells from yeast to mycelia, and demonstrate that PI/PC-TP function is utilized in diverse ways by different organisms.  相似文献   

15.
Despite advances in understanding the cell biology of glycoinositol phospholipid (GPI)-anchored proteins in cultured cells, the in vivo functions of GPI anchors have remained elusive. We have focused on Drosophila acetylcholinesterase (AChE) as a model GPI-anchored protein that can be manipulated in vivo with sophisticated genetic techniques. In Drosophila, AChE is found only as a GPI-anchored G2 form encoded by the Ace locus on the third chromosome. To pursue our goal of replacing wild-type GPI-anchored AChE with forms that have alternative anchor structures in transgenic files, we report the construction of two secreted forms of Drosophila AChE (SEC1 and SEC2) and a chimeric form (TM-AChE) anchored by the transmembrane and cytoplasmic domains of herpes simplex virus type 1 glycoprotein C. To confirm that the biochemical properties of these AChEs were unchanged from GPI-AChE except as predicted, we made stably transfected Drosophila Schneider Line 2(S2) cells expressing each of the four forms. TM-AChE, SEC1, and SEC2 had the same catalytic activity and quaternary structure as wild type. TM-AChE was expressed as an amphiphilic membrane-bound protein resistant to an enzyme that cleaves GPI-AChE (phosphatidylinositol-specific phospholipase C), and the same percentage of TM-AChE and GPI-AChE was on the cell surface according to immunofluorescence and pharmacological data. SEC1 and SEC2 were constructed by truncating the C-terminal signal peptide initially present in GPI-AChE: in SEC1 the last 25 residues of this 34-residue peptide were deleted while in SEC2 the last 29 were deleted. Both SEC1 and SEC2 were efficiently secreted and are very stable in culture medium; with one cloned SEC1-expressing line, AChE accumulated to as high as 100 mg/liter. Surprisingly, 5-10% of SEC1 was attached to a GPI anchor, but SEC2 showed no GPI anchoring. Since no differences in catalytic activity were observed among the four AChEs, and since the same percentage of GPI-AChE and TM-AChE were on the cell surface, we contend that in vivo experiments in which GPI-AChE is replaced can be interpreted solely on the basis of the altered anchoring domain.  相似文献   

16.
细胞自噬是一种重要且保守的细胞内降解过程,通过形成双层膜的自噬体包裹细胞内容物进行降解。内质网来源的COPII囊泡被认为是饥饿诱导的应激过程中自噬体的膜源。探究了COPII囊泡衣被蛋白SEC24A在巨自噬通路中的作用。利用siRNA干扰技术敲低SEC24A的表达,EBSS饥饿处理对照组和SEC24A敲低组HeLa细胞2 h诱导自噬发生,经Western blot和免疫荧光实验检测自噬底物蛋白p62和自噬标志蛋白LC3-II的蛋白水平变化,以确定SEC24A是否参与自噬。通过RFP-GFP-LC3串联荧光检测自噬体和自噬溶酶体的数目,利用蛋白酶K保护实验验证自噬缺陷发生在自噬体闭合之前或者之后,利用免疫荧光实验检测敲低SEC24A对自噬通路上ATG复合物的影响,以确定SEC24A调控自噬通路的位点。通过免疫共沉淀实验验证SEC24A与自噬相关蛋白ATG9A是否存在相互作用。蛋白检测实验发现,饥饿条件下与对照细胞相比,敲低SEC24A细胞内自噬底物蛋白p62积累,而标志蛋白LC3-II减少。RFP-GFP-LC3串联荧光实验显示,敲低SEC24A后自噬体及自噬溶酶体的数目均减少。蛋白酶K保护实验显示,SEC24A敲低细胞中受膜结构保护的p62和GFP-LC3均减少,提示SEC24A作用位点在自噬体闭合之前。免疫荧光实验显示,敲低SEC24A的表达后ATG14L、ATG16L1点状结构减少,而ATG9A点状结构的数量没有明显变化,提示SEC24A作用于ATG14L、ATG16L1上游。免疫共沉淀实验显示SEC24A与ATG9A存在相互作用。研究结果不仅有助于深化对自噬体形成过程和分子机制的了解,也为全面解读COPII囊泡及其衣被蛋白在自噬中的重要作用提供了信息。  相似文献   

17.
The transporters for serotonin (SERT), dopamine, and noradrenaline have a conserved hydrophobic core but divergent N and C termini. The C terminus harbors the binding site for the coat protein complex II (COPII) cargo-binding protein SEC24. Here we explored which SEC24 isoform was required for export of SERT from the endoplasmic reticulum (ER). Three lines of evidence argue that SERT can only exit the ER by recruiting SEC24C: (i) Mass spectrometry showed that a peptide corresponding to the C terminus of SERT recruited SEC24C-containing COPII complexes from mouse brain lysates. (ii) Depletion of individual SEC24 isoforms by siRNAs revealed that SERT was trapped in the ER only if SEC24C was down-regulated, in both, cells that expressed SERT endogenously or after transfection. The combination of all siRNAs was not more effective than that directed against SEC24C. A SERT mutant in which the SEC24C-binding motif ((607)RI(608)) was replaced by alanine was insensitive to down-regulation of SEC24C levels. (iii) Overexpression of a SEC24C variant with a mutation in the candidate cargo-binding motif (SEC24C-D796V/D797N) but not of the corresponding mutant SEC24D-D733V/D734N reduced SERT surface levels. In contrast, noradrenaline and dopamine transporters and the more distantly related GABA transporter 1 relied on SEC24D for ER export. These observations demonstrate that closely related transporters are exclusive client cargo proteins for different SEC24 isoforms. The short promoter polymorphism results in reduced SERT cell surface levels and renders affected individuals more susceptible to depression. By inference, variations in the Sec24C gene may also affect SERT cell surface levels and thus be linked to mood disorders.  相似文献   

18.
The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for secretory protein movement from the Golgi complex. That some conservation of SEC14p function may exist was initially suggested by experiments that revealed immunoreactive polypeptides in cell extracts of the divergent yeasts Kluyveromyces lactis and Schizosaccharomyces pombe. We have cloned and characterized the K. lactis SEC14 gene (SEC14KL). Immunoprecipitation experiments indicated that SEC14KL encoded the K. lactis structural homolog of SEC14p. In agreement with those results, nucleotide sequence analysis of SEC14KL revealed a gene product of 301 residues (Mr, 34,615) and 77% identity to SEC14p. Moreover, a single ectopic copy of SEC14KL was sufficient to render S. cerevisiae sec14-1(Ts) mutants, or otherwise inviable sec14-129::HIS3 mutant strains, completely proficient for secretory pathway function by the criteria of growth, invertase secretion, and kinetics of vacuolar protein localization. This efficient complementation of sec14-129::HIS3 was observed to occur when the rates of SEC14pKL and SEC14p synthesis were reduced by a factor of 7 to 10 with respect to the wild-type rate of SEC14p synthesis. Taken together, these data provide evidence that the high level of structural conservation between SEC14p and SEC14pKL reflects a functional identity between these polypeptides as well. On the basis of the SEC14p and SEC14pKL primary sequence homology to the human retinaldehyde-binding protein, we suggest that the general function of these SEC14p species may be to regulate the delivery of a hydrophobic ligand to Golgi membranes so that biosynthetic secretory traffic can be supported.  相似文献   

19.
There is growing clinical interest in the use of pegylated recombinant proteins with enhanced stability, half-life, and bioavailability. The objective of this study was to develop a quantitative understanding of the ultrafiltration characteristics of a series of pegylated proteins with different degrees of pegylation. Sieving data were compared with available theoretical models and with corresponding results for the partition coefficient in size exclusion chromatography (SEC). The sieving coefficients of the pegylated proteins depended not only on the protein size and the total molecular weight of the polyethylene glycol (PEG) but also on the number of PEG chains. This is in sharp contrast to the partition coefficient in SEC, which was uniquely determined by the total molecular weight of the PEG and protein. This difference is due to the deformation and/or elongation of the PEG chains caused by the convective flow into the membrane pores, an effect that is not present in SEC. These results provide important insights into the transport and separation characteristics of pegylated proteins.  相似文献   

20.
Pollen tube polar growth is a key physiological activity for angiosperms to complete double fertilization, which is highly dependent on the transport of polar substances mediated by secretory vesicles. The exocyst and Sec1/Munc18 (SM) proteins are involved in the regulation of the tethering and fusion of vesicles and plasma membranes, but the molecular mechanism by which they regulate pollen tube polar growth is still unclear. In this study, we found that loss of function of SEC1A, a member of the SM protein family in Arabidopsis thaliana, resulted in reducing pollen tube growth and a significant increase in pollen tube width. SEC1A was diffusely distributed in the pollen tube cytoplasm, and was more concentrated at the tip of the pollen tube. Through co-immunoprecipitation-mass spectrometry screening, protein interaction analysis and in vivo microscopy, we found that SEC1A interacted with the exocyst subunit SEC6, and they mutually affected the distribution and secretion rate at the tip of the pollen tube. Meanwhile, the functional loss of SEC1A and SEC6 significantly affected the distribution of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex member SYP125 at the tip of the pollen tube, and led to the disorder of pollen tube cell wall components. Genetic analysis revealed that the pollen tube-related phenotype of the sec1a sec6 double mutant was significantly enhanced compared with their respective single mutants. Therefore, we speculated that SEC1A and SEC6 cooperatively regulate the fusion of secretory vesicles and plasma membranes in pollen tubes, thereby affecting the length and the width of pollen tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号