首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have quantitated by autoradiography the binding of [125I]labeled 3T3 plasma membrane fragments to 3T3 cells growing on the surface of plastic dishes; ie, the same conditions in which these membranes specifically arrest the growth of 3T3 cells early in the G1 phase of the cell cycle. We have been able to demonstrate that binding of membranes to cells is coincidental with the expression of the growth inhibitory activity of protein(s) present in the membrane fragments. Treatments that reduce binding (heat denaturation of the membranes or culture in the presence of high scrum) also reduce growth inhibitory activity. [125I]labeled membranes bound to cells are located primarily on the cell surface (as determined by electron microscope autoradiography) and are exchangeable with unlabeled membranes. We conclude that binding of membranes to cells is necessary but may not be sufficient for the expression of the growth inhibitory activity of these membranes. This approach provides information not only on the average level of binding of membranes to cells, but also provides a quantitative assessment of the variation of the level of membrane to cell binding between different cells in the population.  相似文献   

2.
Membrane proteins (MPs) are prevalent drug discovery targets involved in many cell processes. Despite their high potential as drug targets, the study of MPs has been hindered by limitations in expression, purification and stabilization in order to acquire thermodynamic and kinetic parameters of small molecules binding. These bottlenecks are grounded on the mandatory use of detergents to isolate and extract MPs from the cell plasma membrane and the coexistence of multiple conformations, which reflects biochemical versatility and intrinsic instability of MPs. In this work ,we set out to define a new strategy to enable surface plasmon resonance (SPR) measurements on a thermostabilized and truncated version of the human adenosine (A2A) G-protein-coupled receptor (GPCR) inserted in a lipid bilayer nanodisc in a label- and detergent-free manner by using a combination of affinity tags and GFP-based fluorescence techniques. We were able to detect and characterize small molecules binding kinetics on a GPCR fully embedded in a lipid environment. By providing a comparison between different binding assays in membranes, nanodiscs and detergent micelles, we show that nanodiscs can be used for small molecule binding studies by SPR to enhance the MP stability and to trigger a more native-like behaviour when compared to kinetics on A2A receptors isolated in detergent. This work provides thus a new methodology in drug discovery to characterize the binding kinetics of small molecule ligands for MPs targets in a lipid environment.  相似文献   

3.
Studies were carried out to compare the spreading of baby hamster kidney (BHK) cells, which occurs by an interaction between the cells and a specific serum glycoprotein (ASF) adsorbed onto the substratum surface, with the spreading of BHK cells that occurs by an interaction between the cells and substrata coated with ligands directed at various cell surface determinants. The ligands tested were polycationic ferritin, concanavalin A (ConA) and antibody directed against BHK plasma membranes. Cell spreading onto ASF and ligand-coated substrata were similar even though different cell surface components were apparently involved. The similarities were:
1. 1. The shape of the spread cells.
2. 2. The inhibition of cell spreading by conditions that interfere with metabolic activity, block free sulfhydryl groups, or interfere with microtubules and microfilaments.
3. 3. The similar reorganization of certain cell surface antigenic determinants during cell spreading onto any of the substrata.
The results indicate that cell spreading is a general cellular response to specific cell-substratum interactions but does not depend upon binding between a unique cell surface receptor and the substratum.  相似文献   

4.
Acetylcholinesterase (AChE) inhibitors are potentially lethal but also have applications as therapeutic drugs for neurodegenerative diseases such as Alzheimer’s. Enzyme inhibitor binding are difficult to be detected directly by surface plasmon resonance (SPR) due to their small molecular weight. In this article, we describe the detection of AChE inhibitor binding by SPR without the use of competitive binding or antibodies. AChE was immobilized on the gold surface of an SPR sensor through covalent attachment to a self-assembled monolayer (SAM) of a COOH-terminated alkanethiol. The activity of the immobilized protein and the surface density were determined by using a standard photometric assay. Binding of two reversible inhibitors, which are used as therapeutic drugs, was detectable by SPR without the need to further modify the surface or the use of other reagents. The binding affinities (KA) obtained from the fits were 3.8 × 103 M−1 for neostigmine and 1.7 × 103 M−1 for eserine, showing a higher affinity of the sensor for neostigmine. We believe that the SPR sensor’s ability to detect these inhibitors is due to conformational changes of the enzyme structure on inhibitor binding.  相似文献   

5.
A surface plasmon resonance (SPR) imaging system was constructed and used to detect the hexahistidine-ubiquitin-tagged human parathyroid hormone fragment (His6-Ub-hPTHF(1–34)) expressed inEscherichia coli. The hexahistidine-specific antibody was immobilized on a thin gold film coated with ProLinkerTM B, a novel calixcrown derivative with a bifunctional coupling property that permits efficient immobilization of capture proteins on solid matrices. The soluble and insoluble fractions of anE. coli cell lysate were spotted onto the antibody-coated gold chip, which was then washed with buffer (pH 7.4) solution and dried. SPR imaging measurements were carried out to detect the expressed His6-Ub-hPTHF (1–34). There was no discernible protein image in the uninduced cell lysate, indicating that non-specific binding of contaminant proteins did not occur on the gold chip surface. It is expected that the approach used here to detect affinity-tagged recombinant proteins using an SPR imaging technique could be used as a powerful tool for the analyses of a number of proteins in a high-throughput mode.  相似文献   

6.
We have developed a ligand-specific method for the visualization, isolation, and biochemical characterization of cell surface and intracellular membranes mediating endocytic transport. Iron dextran particles (FeDex) bearing either covalently conjugated galactosyl bovine serum albumin (GalBSA/FeDex) or asialofetuin (ASF/FeDex) are bound by the asialoglycoprotein receptor (ASGP-R) of HepG2 cells and transported to lysosomes with kinetics indistinguishable from those of free GalBSA or ASF. FeDex particles, which have a 3 to 5 nm electron-dense colloidal iron core, can be visualized by electron microscopy. Following incubation of GalBSA/FeDex with HepG2 cells at 37 degrees C, FeDex particles are seen at the cell surface, in endosomes, and in lysosomes. Surface membrane and intracellular organelles bearing a sufficient number of FeDex particles can be efficiently isolated from disrupted cells by high gradient magnetic affinity chromatography (HIMAC). Plasma membranes and endosomal/lysosomal membranes isolated by HIMAC are 35 to 40-fold enriched for GalBSA/FeDex or ASF/FeDex relative to the postnuclear supernatant. Alkaline phosphodiesterase I (APDE) and galactosyltransferase are each enriched 8-fold in the plasma membrane fraction prepared by HIMAC whereas neither beta-galactosidase nor glucose-6-phosphatase are detected in this fraction. The intracellular membrane fraction, containing both endosomes and lysosomes, is enriched for galactosyltransferase and beta-galactosidase but not for APDE or glucose-6-phosphatase. Use of FeDex conjugates in conjunction with HIMAC provides an effective method for ligand-specific isolation of membranes and correlation of morphological and biochemical characteristics.  相似文献   

7.
A wide range of equilibrium and kinetic constants exist for the interaction of prothrombin and other coagulation factors with various model membranes from a variety of techniques. We have investigated the interaction of prothrombin with pure dioleoylphosphatidylcholine (DOPC) membranes and dioleoylphosphatidlyserine (DOPS)-containing membranes (DOPC:DOPS, 3:1) using surface plasmon resonance (SPR, with four different model membrane presentations) in addition to isotheral titration calorimetry (ITC, with suspensions of phospholipid vesicles) and ELISA methods. Using ITC, we found a simple low-affinity interaction with DOPC:DOPS membranes with a K D = 5.1 μM. However, ELISA methods using phospholipid bound to microtitre plates indicated a complex interaction with both DOPC:DOPS and DOPC membranes with K D values of 20 and 58 nM, respectively. An explanation for these discrepant results was developed from SPR studies. Using SPR with low levels of immobilised DOPC:DOPS, a high-affinity interaction with a K D of 18 nM was obtained. However, as phospholipid and prothrombin concentrations were increased, two distinct interactions could be discerned: (i) a kinetically slow, high-affinity interaction with K D in the 10?8 M range and (ii) a kinetically rapid, low-affinity interaction with K D in the 10?6 M range. This low affinity, rapidly equilibrating, interaction dominated in the presence of DOPS. Detailed SPR studies supported a heterogeneous binding model in agreement with ELISA data. The binding of prothrombin with phospholipid membranes is complex and the techniques used to measure binding will report K D values reflecting the mixture of complexes detected. Existing data suggest that the weaker rapid interaction between prothrombin and membranes is the most important in vivo when considering the activation of prothrombin at the cell surface.  相似文献   

8.
Addition of a suspension of a surface membrane enriched fraction prepared from confluent 3T3 cells to sparse 3T3 cells in culture results in a concentration dependent and saturable decrease in the rate of DNA synthesis. The inhibition of cell growth by membranes resembles the inhibition of cell growth observed at confluent cell densities by a number of criteria: (1) In both cases the cells are arrested in the G1 protion of the cell cycle; (2) the inhibition by membranes or by high local cell density can to a large extent be compensated for by raising the serum concentration or by addition of fibroblast growth factor plus dexamethasone. Membranes prepared from sparse cultures inhibit less well than membranes from confluent cultures in a manner which suggests that binding of membranes to cells is not by itself sufficient to cause inhibition of cell growth. The inhibitory activity has a subcellular distribution similar to phosphodiesterase (a plasma membrane marker) and appears to reside in one or more intrinsic membrane components. Maximally, membranes can arrest about 40% of the cell population in each cell cycle. Plasma membranes obtained from sparse 3T3 cells are less inhibitory than membranes obtained from confluent cells. This suggests either that the inhibitory component(s) in the plasma membrane responsible for growth inhibition may be in part induced by high cell density, or that this component(s) may be lost from these membranes during purification.  相似文献   

9.
Vascular endothelial growth factor (VEGF) is produced either as a pro-angiogenic or anti-angiogenic protein depending upon splice site choice in the terminal, eighth exon. Proximal splice site selection (PSS) in exon 8 generates pro-angiogenic isoforms such as VEGF165, and distal splice site selection (DSS) results in anti-angiogenic isoforms such as VEGF165b. Cellular decisions on splice site selection depend upon the activity of RNA-binding splice factors, such as ASF/SF2, which have previously been shown to regulate VEGF splice site choice. To determine the mechanism by which the pro-angiogenic splice site choice is mediated, we investigated the effect of inhibition of ASF/SF2 phosphorylation by SR protein kinases (SRPK1/2) on splice site choice in epithelial cells and in in vivo angiogenesis models. Epithelial cells treated with insulin-like growth factor-1 (IGF-1) increased PSS and produced more VEGF165 and less VEGF165b. This down-regulation of DSS and increased PSS was blocked by protein kinase C inhibition and SRPK1/2 inhibition. IGF-1 treatment resulted in nuclear localization of ASF/SF2, which was blocked by SPRK1/2 inhibition. Pull-down assay and RNA immunoprecipitation using VEGF mRNA sequences identified an 11-nucleotide sequence required for ASF/SF2 binding. Injection of an SRPK1/2 inhibitor reduced angiogenesis in a mouse model of retinal neovascularization, suggesting that regulation of alternative splicing could be a potential therapeutic strategy in angiogenic pathologies.  相似文献   

10.
Specific binding of fluoresceinated succinyl-concanavalin A, wheat germ agglutinin, and ricin to untreated and trypsinized bloodstream forms of Trypanosoma brucei rhodesiense was quantitated by flow cytofluorimetry, and sites of lectin binding were identified by fluorescence microscopy. All three lectins only bound to the flagellar pocket of untreated parasites. When parasites were trypsinized to remove the variant surface glycoprotein coat, new lectin binding sites were exposed, and specific binding of all three lectins increased significantly. New specific binding sites for succinyl-concanavalin A and wheat germ agglutinin were present along both the free flagellum and flagellar adhesion zone and were uniformly distributed on the parasite surface. However, ricin did not bind uniformly on the surface and did not stain the free flagellum of trypsinized cells. Ricin only bound to the flagellar adhesion zone of trypsinized cells and of cells that had been treated with formaldehyde prior to staining. Electron microscopy of cells exposed to ricin-colloidal gold complexes revealed that that ricin binding was restricted to the anterior membrane of the flagellar pocket of untrypsinized cells and to this portion of the flagellar pocket and the cell body membrane in the flagellar adhesion zone of trypsinized cells. Evidence that these membranes constitute a functionally important membrane microdomain is reviewed.  相似文献   

11.
Recent studies indicate that the chelator lipid nitrilotriacetic acid ditetradecylamine (NTA-DTDA) can be used to engraft T cell costimulatory molecules onto tumor cell membranes, potentially circumventing the need for genetic manipulation of the cells for development of cell- or membrane-based tumor vaccines. Here, we show that a related lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA3-DTDA, which has three NTA moieties in its headgroup instead of one) is several-fold more effective than NTA-DTDA at promoting stable His-tagged protein engraftment. IAsys biosensor studies show that binding of His-tagged B7.1 (B7.1-6H) to NTA3-DTDA-containing membranes, exhibit a faster on-rate and a slower off-rate, compared to membranes containing NTA-DTDA. Also, NTA3-DTDA-containing liposomes and plasma membrane vesicles (PMV) engrafted with B7.1-6H and CD40-6H exhibit greater binding to T cells, in vitro and in vivo. Engrafted NTA3-DTDA-containing PMV encapsulated cytokines such as IL-2, IL-12, GM-CSF and IFN-γ, allowing targeted delivery of both antigen and cytokine to T cells, and stimulation of antigen-specific T cell proliferation and cytotoxicity. Importantly, use of B7.1-CD40-engrafted PMV containing IL-2 and IL-12 as a vaccine in DBA/2J mice induced protection against challenge with syngeneic tumor cells (P815 mammary mastocytoma), and regression of established tumors. The results show that stable protein engraftment onto liposomal membranes using NTA3-DTDA can be used to simultaneously target associated antigen, costimulatory molecules and cytokines to T cells in vivo, inducing strong anti-tumor responses and immunotherapeutic effect.  相似文献   

12.
Etoposide, a clinically useful anticancer drug, is a potent inhibitor of topoisomerase II. The DNA strand breaks caused by this epipodophyllotoxin lead to apoptotic death of tumor cells. Flow cytometry was used to investigate the relationship between the effects of the drug on the cell cycle of human leukemia HL-60 cells and the variations of the mitochondrial transmembrane potential (ΔΨmt). Three cationic fluorescent probes, DiOC6, JC-1, and TMRM, were used to measure drug-induced changes of ΔΨmt. In all three cases, we found that the arrest in the G2/M phase of the cells treated with 0.5 μM etoposide is associated with an increase in the potential of mitochondrial membranes whereas treatment with a tenfold higher drug concentration trigger massive apoptosis and a collapse of ΔΨmt. DNA fragmentation (TUNEL assay) and externalization of phosphatidylserine residues in the outer leaflet of the plasma membrane (annexin V binding) were measured to characterize the apoptotic cell population.  相似文献   

13.
Diphtheria toxin is believed to enter sensitive mammalian cells via receptor-mediated endocytosis from clathrin-coated pits, while ricin can enter via both clathrin-dependent and clathrin-independent endocytosis. The present study has confirmed this by determining the toxin sensitivity of COS-7y cells which were transiently overexpressing atransdominant negative mutant of dynamin, a GTPase required for the budding of clathrin-coated vesicles from the plasma membrane. Cells overexpressing wild-type dynamin showed normal receptor-mediated endocytosis of transferrin and remained sensitive to both diphtheria toxin and ricin. Cells overexpressing a mutant dynamin defective in GTP binding and hydrolysis were unable to endocytose transferrin and were protected against diphtheria toxin, but they remained completely sensitive to ricin intoxication. Treating nontransfected cells or cells overexpressing mutant dynamin with nystatin caused a redistribution of the caveolae membrane marker protein VIP21-caveolin from the cell surface to intracellular locations, but did not affect their sensitivity to ricin. The redistribution of caveolin seen after nystatin treatment may reflect the disappearance of caveolae. If this is the case, caveolae are not responsible for the endocytosis of ricin. An alternative clathrin-independent route may operate for ricin, since cellular uptake, intracellular transport, and translocation into the cytosol remain unaffected when clathrin-dependent endocytosis is effectively blocked.  相似文献   

14.
We have previously reported changes in the chemical composition of cell surface membranes in diabetic rats (Chandramoulis, V. and Carter, Jr., J. R. (1975) Diabetes 24, 257-262 [1]). To examine the possible implications of these changes for cell surface structures, we have measured the binding of labeled lectins and desialylated glycoproteins to plasma membranes prepared from the livers of streptozotocin--diabetic and control rats. Lectins were chosen which have affinities for different carbohydrate moieties. The binding of ricin and concanavalin A to liver cell membranes from the diabetic rats was significantly reduced, but no change in the binding of wheat germ agglutinin was noted. Binding of desialylated thyrozine--binding globulin, previously shown to be dependent on membrane sialic acid residues, ws strongly suggest that insulin deficiency leads to generalized changes in cell surfaced glycoproteins, at least in this animal model of diabetes.  相似文献   

15.
Specific binding of fluoresceinated succinyl-concanavalin A, wheat germ agglutinin, and ricin to untreated and trypsinized bloodstream forms of Trypanosoma brucei rhodesiense was quantitated by flow cytofluorimetry, and sites of lectin binding were identified by fluorescence microscopy. All three lectins only bound to the flagellar pocket of untreated parasites. When parasites were trypsinized to remove the variant surface glycoprotein coat, new lectin binding sites were exposed, and specific binding of all three lectins increased significantly. New specific binding sites for succinyl-concanavalin A and wheat germ agglutinin were present along both the free flagellum and flagellar adhesion zone and were uniformly distributed on the parasite surface. However, ricin did not bind uniformly on the surface and did not stain the free flagellum of trypsinized cells. Ricin only bound to the flagellar adhesion zone of trypsinized cells and of cells that had been treated with formaldehyde prior to staining. Electron microscopy of cells exposed to ricin-colloidal gold complexes revealed that that ricin binding was restricted to the anterior membrane of the flagellar pocket of untrypsinized cells and to this portion of the flagellar pocket and the cell body membrane in the flagellar adhesion zone of trypsinized cells. Evidence that these membranes constitute a functionally important membrane microdomain is reviewed.  相似文献   

16.
A role for coenzyme Q in the stabilization of extracellular ascorbate by intact cells has beenrecently recognized. The aim of this work was to study the interactions between reducedubiquinone in the plasma membrane and the ascorbyl free radical, as an approach to understandubiquinone-mediated ascorbate stabilization at the cell surface. K-562 cells stabilized ascorbateand decreased the steady-state levels of the semiascorbyl radical. The ability of cells to reduceascorbyl free radical was inhibited by the quinone analogs capsaicin and chloroquine andstimulated by supplementing cells with coenzyme Q10. Purified plasma membranes also reducedascorbyl free radical in the presence of NADH. Free-radical reduction was notobserved inquinone-depleted plasma membranes, but restored after its reconstitution with coenzyme Q10.Addition of reduced coenzyme Q10 to depleted membranes allowed them toreduce the signalof the ascorbyl free radical without NADH incubation and the addition of an extra amount ofpurified plasma membrane quinone reductase further stimulated this activity. Reduction wasabolished by treatment with the reductase inhibitor p-hydroximercuribenzoate and by blockingsurface glycoconjugates with the lectin wheat germ agglutinin, which supports the participationof transmembrane electron flow. The activity showed saturation kinetics by NADH andcoenzyme Q, but not by the ascorbyl free radical in the range of concentrations used. Our resultssupport that reduction of ascorbyl free radicals at the cell surface involves coenzyme Qreduction by NADH and the membrane-mediated reduction of ascorbyl free radical.  相似文献   

17.
EthR is a mycobacterial repressor that limits the bioactivation of ethionamide, a commonly used anti-tuberculosis second-line drug. Several efforts have been deployed to identify EthR inhibitors abolishing the DNA-binding activity of the repressor. This led to the demonstration that stimulating the bioactivation of Eth through EthR inhibition could be an alternative way to fight Mycobacterium tuberculosis. We propose a new surface plasmon resonance (SPR) methodology to study the affinity between inhibitors and EthR. Interestingly, the binding between inhibitors and immobilized EthR produced a dose-dependent negative SPR signal. We demonstrate that this signal reveals the affinity of small molecules for the repressor. The affinity constants (KD) correlate with their capacity to inhibit the binding of EthR to DNA. We hypothesize that conformational changes in EthR during ligand interaction could be responsible for this SPR signal. Practically, this unconventional result opens perspectives onto the development of an SPR assay that would at the same time reveal structural changes in the target upon binding with an inhibitor and the binding constant of this interaction.  相似文献   

18.
Wang Y  Guo L  Zhao K  Chen J  Feng J  Sun Y  Li Y  Shen B 《Biotechnology letters》2007,29(12):1811-1816
So far, no specific therapeutic agent is available for the treatment of ricin intoxication. Here, VH and VL genes were cloned from a hybridoma cell line secreting anti-ricin mAb 4C13, which could neutralize the toxicity of ricin. A chimeric antibody, c4C13, containing 4C13 mAb variable region genes fused to human constant region genes (gamma 1, kappa), was constructed. C4C13 retained the binding activity and recognized the same, or a closely related, epitope as the original mouse antibody. Furthermore, c4C13 blocked ricin-induced cytotoxicity to SP2/0 cells. Compared with its parental mouse antibody, c4C13 will be safer when used in human body to reverse clinical ricin intoxication. Yugang Wang and Leiming Guo contributed equally to this work.  相似文献   

19.
Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food.  相似文献   

20.
Enfuvirtide and T-1249 are two HIV-1 fusion inhibitor peptides that bind to gp41 and prevent its fusogenic conformation, inhibiting viral entry into host cells. Previous studies established the relative preferences of these peptides for membrane model systems of defined lipid compositions. We aimed to understand the interaction of these peptides with the membranes of erythrocytes and peripheral blood mononuclear cells. The peptide behavior toward cell membranes was followed by di-8-ANEPPS fluorescence, a lipophilic probe sensitive to the changes in membrane dipole potential. We observed a fusion inhibitor concentration-dependent decrease on the membrane dipole potential. Quantitative analysis showed that T-1249 has an approximately eight-fold higher affinity towards cells, when compared with enfuvirtide. We also compared the binding towards di-8-ANEPPS labeled lipid vesicles that model cell membranes and obtained concordant results. We demonstrated the distinct enfuvirtide and T-1249 membranotropism for circulating blood cells, which can be translated to a feasible in vivo scenario. The enhanced interaction of T-1249 with cell membranes correlates with its higher efficacy, as it can increase and accelerate the drug binding to gp41 in its pre-fusion state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号