首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonenzymatic reaction of reducing sugars with the free amino group located at the N terminus of the polypeptide chain or in the lysine side chain results in glycation of proteins. The fragments of glycated proteins obtained by enzymatic hydrolysis could be considered as the biomarkers of both the aging process and diabetes mellitus. Here we propose a new method for the identification of peptide-derived Amadori products in the enzymatic digest of glycated proteins. The products of enzymatic hydrolysis of the model protein ubiquitin were incubated with H218O under microwave activation. We observed that at these conditions the Amadori compounds selectively exchange one oxygen atom in the hexose moiety. The characteristic isotopic pattern of Amadori products treated with H218O allows fast and convenient identification of this group of compounds, whereas nonglycated peptides are not susceptible to isotopic exchange.  相似文献   

2.
Protein glycation is often a cause of diabetes-associated complications. The isotopically labeled peptide-derived Amadori products may serve as standards for quantitative determination of the glycated proteins. In this paper, we discussed various approaches to the synthesis of Amadori products labeled selectively with stable isotopes 2H, 13C and 18O.  相似文献   

3.
Two procedures of glycated peptides’ synthesis have been developed. The first method involves reductive alkylation of the ε-amino groups of lysine with 2,3:4,5-di-O-isopropylidene-β-d-arabino-hexos-2-ulo-2,6-pyranose in the presence of sodium cyanoborohydride on solid support. The second one uses a new fully protected lysine derivative, which is a building block designed for direct introduction of the glycated lysine moiety into a peptide, according to the standard solid phase synthesis protocol. The applicability of the proposed methods for the synthesis of peptide-derived Amadori products is discussed. The structure of the synthesized glycated peptides was confirmed by high-resolution mass spectrometry and enzymatic hydrolysis. Circular dichroism studies, performed in water solution, revealed that the formation of the Amadori rearrangement product in the lysine side chain does not influence significantly the conformational preferences of the peptides studied. However, when the solvent was changed to trifluoroethanol, the glycated peptides preferred β-turn conformation.  相似文献   

4.
Nonenzymatically glycated proteins are preferentially transported across the glomerular filtration barrier, and the glomerular mesangium in diabetes is bathed with serum containing increased concentrations of glycated albumin. We investigated effects of glycated albumin on mesangial cells, which are involved in diabetic nephropathy. [3H]-thymidine incorporation was significantly inhibited when murine mesangial cells were grown in culture media containing human serum that had been nonenzymatically glycated by incubation for 4 days with 28 mM glucose. This inhibition was reversed when monoclonal antibodies that selectively react with Amadori products of glycated albumin were added to the culture media. Purified glycated albumin containing Amadori adducts of the glycation reaction induced significant inhibition of thymidine incorporation and stimulation of Type IV collagen secretion compared with cells cultured in the presence of purified nonglycated albumin. These changes were prevented when monoclonal antibodies specifically reactive with fructosyl-lysine epitopes in glycated albumin were added to the cultures. The antibodies had no effect on growth or collagen production in the presence of nonglycated albumin. The results provide the first evidence directly implicating Amadori adducts in glycated albumin in the pathogenesis of diabetic nephropathy, which is characterized by decreased cellularity in association with expansion of the mesangial matrix.  相似文献   

5.
Furosine, formed by hydrolysis of 1-deoxy-fructosyl-lysine (fructose-lysine), is a product of the Amadori rearrangement of glucose and ϵ-NH2-lysine. Fructose-lysine can react further with tissue and circulating proteins to produce advanced glycation end-products (AGEs). Peritoneal dialysate used in the treatment of patients with end-stage renal failure contains high concentrations of glucose which may lead to intraperitoneal formation of AGEs. To quantitate the kinetics of formation and peritoneal clearance of glycated peritoneal dialysate proteins, we developed an effective approach to the measurement of furosine in clinical samples of serum and peritoneal dialysate.  相似文献   

6.
Glycation is a non-enzymatic reaction that is initiated by the primary addition of sugars to amino groups of proteins. In the early phase of glycation, the synthesis of intermediates leads to formation of Amadori compounds. In the last phase, advanced glycation end products (AGE) are irreversibly formed following a complex cascade of reactions. It has recently been shown that glycation also affects diabetes-related complications and Alzheimer’s disease. In this study, human serum albumin at a concentration of 10 mg/ml was incubated in PBS with 40 mM of glucose and in different concentrations of papaverine (25, 100, 250, 500 μM) for 42 days at 37 °C. HSA with no additives as well as with glucose 40 mM were incubated as a control and as a glycated sample, respectively. Following the incubation, the samples were prepared for circular dichroism, fluorescence and absorbance techniques. The results showed that in presence of papaverine and glucose, the glycation of HSA increased notably compared with the glycated sample. In conclusion, in this work, we showed that papaverine affects HSA and increases its glycation level.  相似文献   

7.
In diabetes, protein glycation mostly occurs at intrachain lysine residues resulting in the formation of early stage Amadori products which are finally converted to advance glycation end products (AGEs). Several studies have reported autoantibodies against AGEs in diabetes but not much data are found in respect of Amadori products. In this study, poly-l-lysine (PLL) was glycated with 50 mM glucose and the resultant Amadori products were estimated by fructosamine or nitroblue tetrazolium assay. We report high content of Amadori products in PLL upon glycation. Glycated PLL showed marked hyperchromicity in the UV spectrum, ellipticity changes in CD spectroscopy, and variations in ε-methylene protons shift in NMR. It was better recognized by autoantibodies in type 2 diabetics compared to the native PLL. Induced antibodies against glycated PLL were successfully used to probe early glycation in the IgG isolated from diabetes type 2 patients. Role of Amadori products of glycated proteins in the induction of autoantibodies in type 2 diabetes as well as in associated secondary complications has been discussed.  相似文献   

8.
Acetohexamide is a drug used to treat type II diabetes and is tightly bound to the protein human serum albumin (HSA) in the circulation. It has been proposed that the binding of some drugs with HSA can be affected by the non-enzymatic glycation of this protein. This study used high-performance affinity chromatography to examine the changes in acetohexamide–HSA binding that take place as the glycation of HSA is increased. It was found in frontal analysis experiments that the binding of acetohexamide to glycated HSA could be described by a two-site model involving both strong and weak affinity interactions. The average association equilibrium constant (Ka) for the high affinity interactions was in the range of 1.2–2.0 × 105 M−1 and increased in moving from normal HSA to HSA with glycation levels that might be found in advanced diabetes. It was found through competition studies that acetohexamide was binding at both Sudlow sites I and II on the glycated HSA. The Ka for acetohexamide at Sudlow site I increased by 40% in going from normal HSA to minimally glycated HSA but then decreased back to near-normal values in going to more highly glycated HSA. At Sudlow site II, the Ka for acetohexamide first decreased by about 40% and then increased in going from normal HSA to minimally glycated HSA and more highly glycated HSA. This information demonstrates the importance of conducting both frontal analysis and site-specific binding studies in examining the effects of glycation on the interactions of a drug with HSA.  相似文献   

9.
Scavenging of active oxygen species by glycated proteins was investigated. Glycated proteins were prepared from bovine serum albumin (BSA), insulin, and lysozyme incubated with glucose. Glycated BSA at concentration of 0.5% scavenged 34% of hydroxyl radicals by ESR experiments using DMPO as a spin-trapping reagent. The ability to scavenge hydroxyl radicals by glycated BSA was higher than that by BSA. Hydrogen peroxides also were largely scavenged with an increase in the concentration of glycated proteins. However, the ability to scavenge superoxides by glycated BSA was lower than that by BSA because glycated proteins produced superoxides. Experiments using model compounds such as Amadori compound and caproyl pyrraline suggested that the scavenging ability of glycated proteins against hydroxyl radicals depends on Maillard reaction products in the advanced stage, while the ability against hydrogen peroxides is dependent upon Maillard reaction products in the early stage and brown pigments.  相似文献   

10.
Proteins modifications in diabetes may lead to early glycation products (EGPs) as well as advanced glycation end products (AGEs). Whereas no extensive studies have been carried out to assess the role of EGPs in secondary complications of diabetes, numerous investigators have demonstrated the role of AGEs. Early glycation involves attachment of glucose on ε-NH2 of lysine residues of proteins leading to generation of the Amadori product (an early glycation species). This study reports the structural and immunological characterization of EGPs of HSA because we believe that during persistent hyperglycemia the HSA, one of the major blood proteins, can undergo fast glycation. Glucose mediated generation of EGPs of HSA was quantitated as Amadori products by NBT assay and authenticated by boronate affinity chromatography and LC/MS. Compared to native HSA changes in glycated-HSA were characterized by hyperchromicity, loss in fluorescence intensity and a new peak in the FTIR profile. Immunogenicity of native- and glycated-HSA was evaluated by inducing antibodies in rabbits. Results suggest generation of neo-epitopes on glycated-HSA rendering it highly immunogenic compared to native HSA. Quantization of EGPs of HSA by authentic antibodies against HSA-EGPs can be used as marker for early detection of the initiation/progression of secondary complications of diabetes.  相似文献   

11.
The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products’ mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.  相似文献   

12.
Nonenzymatic glycation is a posttranslational modification of peptides and proteins by sugars, which, after a cascade of reactions, leads to the formation of a complex family of irreversibly changed adducts implicated in the pathogenesis of human diseases. The stability of the Amadori compounds, the last reversible intermediates, determines the further course of the reaction. To provide information concerning the fate of glycated opioid peptides introduced into human circulation, the enzymatic (80% human serum) and chemical (phosphate buffer) stability of three Amadori compounds related to the endogenous opioid pentapeptide, leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu), and to its N-terminal fragments: N-(1-deoxy-D-fructos-1-yl)-l-tyrosyl-glycyl-glycyl-L-phenylalanyl-L-leucine, N-(1-deoxy-D-fructos-1-yl)-L-tyrosyl-glycyl-glycine, and N-(1-deoxy-D-fructos-1-yl)-L-tyrosine were investigated. The results obtained in human serum indicate that N-terminal glycation of leucine-enkephalin significantly enhances proteolytic stability. While leucine-enkephalin itself was rapidly degraded (t1/2 = 14.8 min), the glycated-derivative was slowly converted (t1/2 = 14 h) to the corresponding Amadori /compound of Tyr-Gly-Gly and Phe-Leu. In phosphate buffer, the rate of hydrolysis of the Amadori compounds depends on the structure and length of the peptide moiety as well as on the concentration of the phosphate buffer. The hydrolysis patterns for the Amadori compounds in phosphate buffer and in human serum were not the same and appear to be specific for each substrate.  相似文献   

13.
Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [13C6] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen.  相似文献   

14.
13C NMR spectroscopy has been used to characterize Amadori (ketoamine) adducts formed by reaction of [2-13C]glucose with free amino groups of protein. The spectra of glycated proteins were acquired in phosphate buffer at pH 7.4 and were interpreted by reference to the spectra of model compounds, N alpha-formyl-N epsilon-fructose-lysine and glycated poly-L-lysine (GlcPLL). The anomeric carbon region of the spectrum (approximately 90-105 ppm) of glycated cytochrome c was superimposable on that of N alpha-formyl-N epsilon-fructose-lysine, and contained three peaks characteristic of the alpha- and beta-furanose and beta-pyranose anomers of Amadori adducts to peripheral lysine residues on protein (pK alpha approximately 10.5). The spectrum of GlcPLL yielded six anomeric carbon resonances; the second set of three was displaced about 2 ppm to lower shielding of the first and was assigned to the Amadori adduct at the alpha-amino terminus (pK alpha approximately 7.5). The spectrum of glycated RNase was similar to that of GlcPLL, but contained a third set of three signals attributable to modification of active site lysine 41 (pK alpha approximately 8.8). The assignments for RNase were confirmed by analysis of spectra taken at pH 4 and under denaturing conditions. The spectrum of glycated hemoglobin was comparable to that of GlcPLL, and distinct resonances could be assigned to Amadori adducts at amino-terminal valine and intrachain N epsilon-lysine residues. Chemical analyses were performed to measure the relative extent of alpha- and epsilon-amino group modification in the glycated macromolecules, and the results were compared with estimates based on integration of the NMR spectra.  相似文献   

15.
The interaction of proteins with glucose results in their non-enzymatic glycation and influences their structural and functional properties. Human serum albumin (HSA) interacts with glucose forming glycated HSA. However, the glucose binding sites and the thermodynamic characteristics of the glycated HSA require further delineation. Here, the binding properties of HSA and glucose were studied utilizing fluorescent techniques. HSA was incubated with glucose in the 0-300mM range at 27 or 37 degrees C. The interaction of HSA with glucose showed two sets of binding sites. The first set consists of two sites with positive cooperativity and the second set consists of nine identical non-cooperative sites. The percentage of glycated HSA (gly%) and the moles of glucose bound to moles of HSA (r) were utilized to obtain binding constants and thermodynamic parameters based on the Wyman binding potential. The enthalpy of binding, obtained by van't Hoff relation, presented exothermicity up to 7mM glucose (126mg/dl, normal range) and endothermic propensity at higher glucose concentrations (>7mM, diabetic range). The start of endothermic propensity was consistent with the diabetic range of glucose concentration and indicates unfolding of HSA. The Gibbs free energy and entropy of binding further supports the unfolding of HSA. Therefore, glucose interacts with multiple sites on HSA affecting its biochemical and biophysical properties. This may interfere with HSA normal function contributing to diabetic complications.  相似文献   

16.
The non-enzymatic modifications of proteins through Amadori and Maillard reactions play an important role in the loss of seed viability during storage. In the present study, the contribution of sugar hydrolysis and lipid peroxidation to Amadori and Maillard reactions, and to seed deterioration was investigated in mung-bean (Vigna radiata Wilczek). The contents of glucose and lipid peroxidation products in seed axes increased significantly during storage. The accumulation of Amadori products in seed axes was correlated to the lipid peroxidation, whereas the accumulation of Maillard products was closely correlated to sugar hydrolysis. The rate of accumulation of Maillard products was not well correlated to the content of Amadori products in both seed axes and protein/glucose model system, reflecting the complex nature of Amadori and Maillard reactions. The content of Amadori products in seed axes increased during the early stages of seed ageing, whereas the content of Maillard products increased steadily during the entire period of storage. The accumulation of Maillard products in seed axes was associated with the decline of seed vigour. These data suggest that, during seed ageing, sugar hydrolysis and lipid peroxidation are coupled with non-enzymatic protein modification through Amadori and Maillard reactions.  相似文献   

17.
Incubation of proteins with glucose leads to their non-enzymatic glycation and formation of Amadori products known as an early glycation product. Oxidative cleavage of Amadori products is considered as a major route to advanced glycation endproducts (AGEs) formation in vivo. Non-enzymatic glycation of proteins or Maillard reaction is increased in diabetes mellitus due to hyperglycemia and leads to several complications such as blindness, heart disease, nerve damage, and kidney failure. The early and advanced glycation products are accumulated in plasma and tissues of diabetic patients and cause production of autoantibodies against corresponding products. The advanced glycation products are also associated with other diseases like cancer. This review summarizes current knowledge of these stage specific glycated products as common and early diagnostic biomarkers for the associated diseases and the complications with the aim of a novel therapeutic target for the diseases.  相似文献   

18.
Depolymerization of hyaluronic acid (HA) by low-molecular-weight Amadori-rearrangement products in the presence of Cu2 + was studied as an in vitro model for the glycated protein-mediated degradation of biopolymers. This oxygen radical-mediated depolymerization was found to be specifically accelerated by Cu2 + , and significantly inhibited by catalase, hydroxyl radical scavengers, and metal ion chelators. Glycated polylysine also depolymerized HA. The difference in depolymerization rate between low- and high-molecular-weight Amadori products is discussed.  相似文献   

19.
The chemistry of Maillard or browning reactions of glycated proteins is being studied in model systems in vitro in order to characterize potential reaction pathways and products in biological systems. In previous work with the Amadori rearrangement product N alpha-formyl-N epsilon-fructoselysine (fFL), an analog of glycated lysine residues in proteins, we showed that fFL was oxidatively cleaved between C-2 and C-3 of the carbohydrate chain to yield N epsilon-carboxymethyllysine (CML) and D-erythronic acid. We then detected CML in proteins glycated in vitro, as well as in human lens proteins and collagen in vivo (Ahmed, M. U., Thorpe, S. R., and Baynes, J. W. (1986) J. Biol. Chem. 261, 4889-4894). This work provided an explanation for the origin of CML in human urine and evidence for non-browning pathways of the Maillard reaction in vivo. In this report we describe the identification of a second set of products resulting from oxidative cleavage of fFL between C-3 and C-4 of the sugar chain, i.e. 3-(N epsilon-lysino)-lactic acid (LL) and D-glyceric acid. The formation of LL from fFL was increased at slightly acid pH, representing about 30% of the yield of CML at pH 6.4, compared with 4% at pH 7.4 in phosphate buffer. By gas chromatography-mass spectroscopy, LL was detected in proteins glycated in vitro and then identified as a natural product in human lens proteins and urine. Our results indicate that oxidative degradation of Amadori adducts to proteins occurs in vivo, leading to formation and excretion of CML and LL. These non-browning pathways for reaction of Amadori compounds may be physiologically relevant mechanisms for averting potentially damaging consequences of the Maillard reaction.  相似文献   

20.
Structural changes associated with the exposure of human serum albumin (HSA) to glucose with or without the presence of Cu (II) have been characterized using a bank of methods for structural analysis including circular dichroism (CD), amino acid analysis (AAA), fluorescence measurements, SDS-PAGE, and boronate binding (which is a measure of Amadori product formation). We show that in the short-term (10 d) incubation mixtures, HSA is resistant to Cu (II)-mediated oxidative damage and that the early products of glycation of HSA had minimal effects on the folded structure. Amino acid analysis showed that there was no formation of advanced glycation endproducts (AGE), which can be measured by loss of lysine. This remained the case in longer term incubation of HSA (56 d) in the hyperglycemic concentration range (5–25 mM glucose) despite increased levels of Amadori product (60% boronate binding) and the formation of glycophore (Excitation 350, Emission 425). At high, nonphysiological concentrations (100 mM and 500 mM) of glucose, glycophore formation increased and 3 and 11 mol Lysine-glucose adduct/mol HSA were converted to AGE, respectively. This was accompanied by increased damage to tryptophan and protein-protein crosslinking but only minor tertiary structural change. In the presence of Cu (II), however, AGE formation was accompanied by extensive damage to histidine and tryptophan side chains, main chain fragmentation, and loss of both secondary and tertiary structure. Thus, changes in structure appear to be the result of oxidation as opposed to glycation, per se. © 1997 Elsevier Science Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号