首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A novel TiO2/CdS nanocomposite was prepared and used to fabricate an electrochemiluminescence (ECL) biosensor for the detection of cancer cells for the first time. The nanocomposite exhibited a strong cathodic ECL signal. Folic acid for targeting cell membranes was bound to a TiO2/CdS/3-aminopropyltriethoxysilane film, and specific recognition of folic acid to targeting cells was achieved, leading to a significant decrease in ECL intensity. The decrease in ECL signal was logarithmically related to the cell concentration in the range of 150–9600 cells mL-1. The ECL biosensor could provide a sensitive, selective, and convenient approach for early and accurate detection of cancer cells.  相似文献   

2.
Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe2+/O2 oxidoreduction and formation of [Fe3+O]n multimers within the protein cage, en route to the cavity, at sites distributed over ∼50 Å. Recent NMR and Co2+-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe2+ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe3+O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A650 nm) and on mineral growth (Fe3+O-A350 nm), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe2+ access/selectivity to the active sites (Glu130), (ii) distribution of Fe2+ to each of the three active sites near each ion channel (Asp127), (iii) product (diferric oxo) release into the Fe3+O nucleation channels (Ala26), and (iv) [Fe3+O]n transit through subunits (Val42, Thr149). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe2+ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits.  相似文献   

3.
《Free radical research》2013,47(9):1018-1027
Abstract

Heme oxygenase-1 (HO-1) is a stress-responsive enzyme that has antioxidant and cytoprotective functions. However, HO-1 has oncogenic functions in cancerous or transformed cells. In the present work, we investigated the effects of HO-1 on the expression of p53 induced by 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in human breast cancer (MCF-7) cells. Treatment of MCF-7 cells with 15d-PGJ2 led to time-dependent increases in the expression of p53 as well as HO-1. Upregulation of p53 expression by 15d-PGJ2 was abrogated by si-RNA knock-down of HO-1. In MCF-7 cells transfected with HO-1 si-RNA, 15d-PGJ2 failed to induce expression of p53 as well as HO-1. In addition, HO-1 inducers enhanced the p53 expression. We speculated that iron, a by-product of HO-1-catalyzed reactions, could mediate 15d-PGJ2–induced p53 expression. Upregulation of p53 expression by 15d-PGJ2 was abrogated by the iron chelator desferrioxamine in MCF-7 cells. Iron released from heme by HO-1 activity is mostly in the Fe2+ form. When MCF-7 cells were treated with the Fe2+-specific chelator phenanthroline, 15d-PGJ2–induced p53 expression was attenuated. In addition, levels of the Fe-sequestering protein H-ferritin were elevated in 15d-PGJ2-treated MCF-7 cells. In conclusion, upregulation of p53 and p21 via HO-1 induction and subsequent release of iron with accumulation of H-ferritin may confer resistance to oxidative damage in cancer cells frequently challenged by redox-cycling anticancer drugs.  相似文献   

4.
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD, which in turn donates an electron to O2, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.  相似文献   

5.
In situ cell separation and immobilization of bacterial cells for biodesulfurization were developed by using superparamagnetic Fe3O4 nanoparticles (NPs). The Fe3O4 NPs were synthesized by coprecipitation followed by modification with ammonium oleate. The surface-modified NPs were monodispersed and the particle size was about 13 nm with 50.8 emu/g saturation magnetization. After adding the magnetic fluids to the culture broth, Rhodococcus erythropolis LSSE8-1 cells were immobilized by adsorption and then separated with an externally magnetic field. The maximum amount of cell mass adsorbed was about 530 g dry cell weight/g particles to LSSE8-1 cells. Analysis showed that the nanoparticles were strongly absorbed to the surface and coated the cells. Compared to free cells, the coated cells not only had the same desulfurizing activity but could also be easily separated from fermentation broth by magnetic force. Based on the adsorption isotherms and Zeta potential analysis, it was believed that oleate-modified Fe3O4 NPs adsorbed bacterial cells mainly because of the nano-size effect and hydrophobic interaction.  相似文献   

6.
The antioxidative effect of CuZnSOD, which catalyzes the dismutation of Superoxide anion (O2-), provides a defense against the oxygen toxicity. The object of the study is to evaluate the erythrocytes Superoxide dismutase (SOD) activity in two groups of persons (Group I, healthy blood donors; Group II, lung cancer patients), using the spectrophotometric assay of NADH oxidation and the indirect method (2–27). The effect of trace elements, such as A13-, Cr3+, Fe3+, Hg2+, NI2+, and Pb2+ (producing free radicals oxygen and present in pollution and smoke) is also evaluated. The results show the decrease of SOD activity in lung cancer patients with respect to healthy individuals. Likewise, in those patients the enzymatic activity is bigger in early stage (I,II) with respect to advanced one (III) (p < 0.05). The lesser activity when the samples are incubated with Ni or Pb point out that these metals play a role in neoplasm development. In short, the oxidant-antioxidant balance is altered in lung cancer patients.  相似文献   

7.
Xu L  Guo C  Wang F  Zheng S  Liu CZ 《Bioresource technology》2011,102(21):10047-10051
A simple and rapid harvesting method by in situ magnetic separation with naked Fe3O4 nanoparticles has been developed for the microalgal recovery of Botryococcus braunii and Chlorella ellipsoidea. After adding the magnetic particles to the microalgal culture broth, the microalgal cells were adsorbed and then separated by an external magnetic field. The maximal recovery efficiency reached more than 98% for both microalgae at a stirring speed of 120 r/min within 1 min, and the maximal adsorption capacity of these Fe3O4 nanoparticles reached 55.9 mg-dry biomass/mg-particles for B. braunii and 5.83 mg-dry biomass/mg-particles for C. ellipsoidea. Appropriate pH value and high nanoparticle dose were favorable to the microalgae recovery, and the adsorption mechanism between the naked Fe3O4 nanoparticles and the microalgal cells was mainly due to the electrostatic attraction. The developed in situ magnetic separation technology provides a great potential for saving time and energy associated with improving microalgal harvesting.  相似文献   

8.
One of the major effects of fluoride on oral bacteria is a reduction in acid tolerance, and presumably also in cariogenicity. The reduction appears to involve transport of protons across the cell membrane by the weak acid HF to dissipate the pH gradient, and also direct inhibition of the F1F0, proton-translocating ATPases of the organisms, especially for Streptococcus mutans. This direct inhibition by fluoride was found to be dependent on aluminum. The dependence on aluminum was indicated by the protection against fluoride inhibition afforded by the Al-chelator deferoxamine and by loss of protection after addition of umolar levels of Al3+, which were not inhibitory for the enzyme in the absence of fluoride. The F1 form of the enzyme dissociated from the cell membrane previously had been found to be resistant to fluoride in comparison with the F1F0 membrane-associated form. However, this difference appeared to depend on less aluminum in the F1 preparation in that the sensitivity of the F1 enzyme to fluoride could be increased by addition of umolar levels of Al3+. The effects of Al on fluoride inhibition were apparent when enzyme activity was assayed in terms of phosphate release from ATP or with an ATP-regenerating system containing phosphoenolpyruvate, pyruvate kinase, NADH and lactic dehydrogenase. Also, Be2+ but not other metal cations, e.g. Co2+, Fe2+, Fe3+, Mn2, Sn2+, and Zn2+, served to sensitize the enzyme to fluoride inhibition. The differences in sensitivities of enzymes isolated from various oral bacteria found previously appeared also to be related to differences in levels of Al. Even the fluoride-resistant enzyme of isolated membranes of Lactobacillus casei ATCC 4646 could be rendered fluoride-sensitive through addition of Al3+. Thus, the F1F0 ATPases of oral bacteria were similar to E1E2 ATPases of eukaryotes in being inhibited by Al-F complexes, and the inhibition presumably involved formation of ADP-Al-F inf3 sup- complexes during catalysis at the active sites of the enzymes.  相似文献   

9.
Perchloric acid extracts of LLC-PK1/Cl4 cells, a renal epithelial cell line, incubated with either [2-13C]glycine l-[3-13C]alanine, or d,l-[3-13C]aspartic acid were investigated by 13C-NMR spectroscopy. All amino acids, except labelled glycine, gave rise to glycolytic products and tricarboxylic acid cycle (TCA) intermediates. For the first time we also observed activity of γ-glutamyltransferase activity and glutathione synthetase activity in LLC-PK1 cells, as is evident from enrichment of reduced glutathione. Time courseS showed that only 6% of the labelled glycine was utilized in 30 min, whereas 31% of l-alanine and 60% of l-aspartic acid was utilized during the same period. 13C-NMR was also shown to be a useful tool for the determination of amino acid uptake in LLC-PK1 cells. These uptake experiments indicated that glycine alanine and aspartic acid are transported into Cl4 cells via a sodium-dependent process. From the relative enrichment of the glutamate carbons, we calculated the activity of pyruvate dehydrogenase to be about 61% of when labelled l-alanine was the only carbon source for LLC-PK1/Cl4 cells. Experiments with labelled d,l-aspartic, however, showed that about 40% of C-3-enriched oxaloacetate (arising from a de-amination of aspartic acid) reached the pyruvate pool.  相似文献   

10.
Although considerably more oxidation-resistant than other P-type ATPases, the yeast PMA1 H+-ATPase of Saccharomyces cerevisiae SY4 secretory vesicles was inactivated by H2O2, Fe2+, Fe- and Cu-Fenton reagents. Inactivation by Fe2+ required the presence of oxygen and hence involved auto-oxidation of Fe2+ to Fe3+. The highest Fe2- (100 μM) and H2O2 (100 mM) concentrations used produced about the same effect. Inactivation by the Fenton reagent depended more on Fe2+ content than on H2O2 concentration, occurred only when Fe2+ was added to the vesicles first and was only slightly reduced by scavengers (mannitol, Tris, NaN3, DMSO) and by chelators (EDTA, EGTA, DTPA, BPDs, bipyridine, 1, 10-phenanthroline). Inactivation by Fe- and Cu- Fenton reagent was the same; the identical inactivation pattern found for both reagents under anaerobic conditions showed that both reagents act via OH·. The lipid peroxidation blocker BHT prevented Fenton-induced rise in lipid peroxidation in both whole cells and in isolated membrane lipids but did not protect the H+-ATPase in secretory vesicles against inactivation. ATP partially protected the enzyme against peroxide and the Fenton reagent in a way resembling the protection it afforded against SH-specific agents. The results indicate that Fe2+ and the Fenton reagent act via metal-catalyzed oxidation at specific metal-binding sites, very probably SH-containing amino acid residues. Deferrioxamine, which prevents the redox cycling of Fe2+, blocked H+-ATPase inactivation by Fe2+ and the Fenton reagent but not that caused by H2O2, which therefore seems to involve a direct non-radical attack. Fe-Fenton reagent caused fragmentation of the H+-ATPase molecule, which, in Western blots, did not give rise to defined fragments bands but merely to smears.  相似文献   

11.
In vitro studies show that docosahexaenoic acid (DHA) can be released from membrane phospholipid by Ca2+-independent phospholipase A2 (iPLA2), Ca2+-independent plasmalogen PLA2 or secretory PLA2 (sPLA2), but not by Ca2+-dependent cytosolic PLA2 (cPLA2), which selectively releases arachidonic acid (AA). Since glutamatergic NMDA (N-methyl-D-aspartate) receptor activation allows extracellular Ca2+ into cells, we hypothesized that brain DHA signaling would not be altered in rats given NMDA, to the extent that in vivo signaling was mediated by Ca2+-independent mechanisms. Isotonic saline, a subconvulsive dose of NMDA (25 mg/kg), MK-801, or MK-801 followed by NMDA was administered i.p. to unanesthetized rats. Radiolabeled DHA or AA was infused intravenously and their brain incorporation coefficients k*, measures of signaling, were imaged with quantitative autoradiography. NMDA or MK-801 compared with saline did not alter k* for DHA in any of 81 brain regions examined, whereas NMDA produced widespread and significant increments in k* for AA. In conclusion, in vivo brain DHA but not AA signaling via NMDA receptors is independent of extracellular Ca2+ and of cPLA2. DHA signaling may be mediated by iPLA2, plasmalogen PLA2, or other enzymes insensitive to low concentrations of Ca2+. Greater AA than DHA release during glutamate-induced excitotoxicity could cause brain cell damage.  相似文献   

12.
Summary Pinocytosis induced by Na+ was assayed by phase contrast microscopy in 8–12 days starvedAmoeba proteus. These cultures were inactive with respect to calcium-dependent Na+-induced pinocytosis, but treatment with amino acid methyl and ethyl esters increased their capacity for pinocytosis. Besides promoting pinocytosis these compounds also stimulated calcium-sensitive secretion of lysosomal enzymes from normal, 2–3 days starved, cells. Only uncharged 1-forms of the amino acid esters were effective. Also other lysosomotropic compounds including monodansylcadaverine, glycine-phenylalanine-2-naphthylamide, NH4Cl, and the ionophores monensin and A23187 activated starved cells. The effect of these agents (except A23187) was inhibited by the drug dantrolene suggesting that activation is a consequence of release of Ca2+ from intracellular stores. Several of the lysosomotropic agents also lost their activating effect in the presence of phospholipase A2 (PLA2) inhibitors. To investigate whether or not PLA2 activity in the cell culture could imitate the effect of the lysosomotropic agents, we incubated starved cells with snake venom PLA2s. These enzymes caused rapid, dantrolene-sensitive activation of the cells. Measurement of endogenous PLA2in normal cells revealed significant cellular activity but no significant secretion of the enzyme into the culture medium was observed. Together the studies with enzyme inhibitors and dantrolene suggest that the process by which lysosomotropic agents affect pinocytosis involves activation of PLA2 and release of Ca2+ from intracellular stores.Abbreviations AnBOMe amino-n-butyric acid methylester - Et ethylester - GPN glycine-1-phenylalanine-2-naphthylamide - MDC monodansylcadaverine - MDTC monodansylthiacadaverine - Me methylester - pBPB p-bromo phenacylbromide - PLA2 phospholipase A2  相似文献   

13.
1,25D3 is critical for the maintenance of normal reproduction since reduced fertility is observed in male rats on a vitamin D-deficient diet. Vitamin D-deficient male rats have incomplete spermatogenesis and degenerative testicular changes. In the present study we have examined the ionic involvement and intracellular messengers of the stimulatory effect of 1,25D3 on amino acid accumulation in immature rat testis. 1,25D3 stimulates amino acid accumulation from 10−12 to 10−6 M by increasing the slope to reach a maximum value at 10−10 M, as compared to the control group. No effect was observed at a lower dose (10−13 M). Time-course showed an increase on amino acid accumulation after 15, 30, and 60 min of incubation with 1,25D3 (10−10 M). 1,25D3 stimulated amino acid accumulation in 11-day-old rat testis but not in testis that were 20 days old. Cycloheximide totally blocked the 1,25D3 action on amino acid accumulation. Furthermore, a localized elevation of cAMP increased the stimulatory effect of 1,25D3 and the blockage of PKA nullified the action of the hormone. In addition, 1,25D3 action on amino acid accumulation was also mediated by ionic pathways, since verapamil and apamine diminished the hormone effect. The stimulatory effect of 1,25D3 on amino acid accumulation is age-dependent and specific to this steroidal hormone since testosterone was not able to change amino acid accumulation in both ages studied. This study provides evidence for a dual effect for 1,25D3, pointing to a genomic effect that can be triggered by PKA, as well as to a rapid response involving Ca2+/K+ channels on the plasma membrane.  相似文献   

14.
The effect of lactic acid (lactate) on Fenton based hydroxyl radical (·OH) production was studied by spin trapping, ESR, and fluorescence methods using DMPO and coumarin-3-carboxylic acid (3-CCA) as the ·OH traps respectively. The ·OH adduct formation was inhibited by lactate up to 0.4mM (lactate/iron stoichiometry = 2) in both experiments, but markedly enhanced with increasing concentrations of lactate above this critical concentration. When the H2O2 dependence was examined, the DMPO-OH signal was increased linearly with H2O2 concentration up to 1 mM and then saturated in the absence of lactate. In the presence of lactate, however, the DMPO-OH signal was increased further with higher H2O2 concentration than 1 mM, and the saturation level was also increased dependent on lactate concentration. Spectroscopic studies revealed that lactate forms a stable colored complex with Fe3+ at lactate/Fe3+ stoichiometry of 2, and the complex formation was strictly related to the DMPO-OH formation. The complex formation did not promote the H2O2 mediated Fe3+ reduction. When the Fe3+-lactate (1:2) complex was reacted with H2O2, the initial rate of hydroxylated 3-CCA formation was linearly increased with H2O2 concentrations. All the data obtained in the present experiments suggested that the Fe3+-lactate (1:2) complex formed in the Fenton reaction system reacts directly with H2O2 to produce additional ·OH in the Fenton reaction by other mechanisms than lactate or lactate/Fe3+ mediated promotion of Fe3+/Fe2+ redox cycling.  相似文献   

15.
Breast cancer cell metastases to bone result in osteolysis and release of large quantities of Ca2+ into the bone microenviroment. Extracellular Ca2+ (Cao2+) acting through the Ca2+-sensing receptor (CaR), a member of G protein-coupled receptor superfamily, plays an important role in the regulation of multiple signaling pathways. Here, we find that expression of the CaR and Gα12 is significantly up-regulated in breast cancer cells (MDA-MB-231 and MCF-7) compared with nonmalignant breast cells (Hs 578Bst and MCF-10A). Cao2+ induces a significant increase in extracellular [3H]phosphocholine (P-cho) production in breast cancer cells. Using an anti-CaR antibody to block Cao2+ binding to the CaR and small interfering RNA (siRNA) to silence CaR gene expression, our data demonstrate that [3H]P-cho production in response to Cao2+-stimulation is CaR-dependent. By analyzing cellular lipid profiles and using siRNA to silence choline kinase (ChoK) expression, we determine that the production of [3H]P-cho is primarily related to CaR-induced ChoK activation, and not degradation of choline phospholipids. Finally, by pretreatment of the cells with either pertussis toxin or C3 exoenzyme, co-immunoprecipiation of Gαi, Gαq or Gα12 with the CaR, and RhoA translocation, we found that the enhancement of ChoK activation and P-cho production in breast cancer cells occurs via a CaR-Gα12-Rho signaling pathway.  相似文献   

16.
The moderately thermophilic iron-oxidizing bacterium strain TI-1, which lacks enzyme systems involved in CO2 fixation, grows at 45°C in Fe2+ medium supplemented with yeast extract to give a maximum cell growth of 1.0 × 108 cells per ml, but does not grow in Fe2+ medium without yeast extract. To elucidate the physiology of the strain, a synthetic medium was developed. It was found that the best synthetic medium was Fe2+-6AA, containing Fe2+, salts, and the following six l-amino acids: alanine, aspartic acid, glutamic acid, arginine, serine, and histidine. In this medium, strain TI-1 showed a maximum cell growth of 10 × 108 cells/ml. The six amino acids in the Fe2+-6AA medium were used not only as a carbon source but also as a source of nitrogen. Inorganic nitrogen sources, such as ammonium ion, hydrazine, hydroxylamine, nitrite, and nitrate, were not used as a sole source of nitrogen, but rather strongly inhibited the utilization of the six amino acids at 1 mM. In the Fe2+ (10 mM)-6AA medium supplemented with 21 mM Fe3+, reduction of Fe3+ to Fe2+ that was dependent on the added amino acids was observed, suggesting another role of the amino acids in the growth of strain TI-1. Washed, intact cells of strain TI-1 had the activity to reduce Fe3+ to Fe2+.  相似文献   

17.
Rhodococcus sp. R14-2, isolated from Chinese Jin-hua ham, produces a novel extracellular cholesterol oxidase (COX). The enzyme was extracted from fermentation broth and purified 53.1-fold based on specific activity. The purified enzyme shows a single polypeptide band on SDS-PAGE with an estimated molecular weight of about 60 kDa, and has a pI of 8.5. The first 10 amino acid residues of the NH2-terminal sequence of the enzyme are A-P-P-V-A-S-C-R-Y-C, which differs from other known COXs. The enzyme is stable over a rather wide pH range of 4.0–10.0. The optimum pH and temperature of the COX are pH 7.0 and 50°C, respectively. The COX rapidly oxidizes 3β-hydroxysteroids such as cholesterol and phytosterols, but is inert toward 3α-hydroxysteroids. Thus, the presence of a 3β-hydroxyl group appears to be essential for substrate activity. The Michaelis constant (Km) for cholesterol is estimated at 55 μM; the COX activity was markedly inhibited by metal ions such as Hg2+ and Fe3+ and inhibitors such as p-chloromercuric benzoate, mercaptoethanol and fenpropimorph. Inhibition caused by p-chloromercuric benzoate, mercuric chloride, or silver nitrate was almost completely prevented by the addition of glutathione. These suggests that -SH groups may be involved in the catalytic activity of the present COX.  相似文献   

18.
Recently, we purified to homogeneity and characterized a low-molecular-weight calcium-dependent phospholipase A2 (PLA2) from developing elm seed endosperm. This represented the first purified and characterized PLA2 from a plant tissue. The full sequences of two distinct but homologous rice (Oryza sativa) cDNAs are given here. These encode mature proteins of 119 amino acids (PLA2-I, preceded by a 19 amino acid signal peptide) and 128 amino acids (PLA2-II, preceded by a 25 amino acid signal peptide), and were derived from four expressed sequence tag (EST) clones. Both proteins were homologous to the N-terminal amino acid sequence of the elm PLA2. They contained twelve conserved cysteine residues and sequences that are likely to represent the Ca2+-binding loop and active-site motif, which are characteristic of animal secretory PLA2s. A soluble PLA2 activity was purified 145 000-fold from green rice shoots. This had the same biochemical characteristics as the elm and animal secretory PLA2s. The purified rice PLA2 consisted of two proteins, with a molecular weight of 12 440 and 12 920, that had identical N-terminal amino acid sequences. This sequence was different from but homologous to the PLA2-I and PLA2-II sequences. Taken together, the results suggest that at least three different low-molecular-weight PLA2s are expressed in green rice shoots. Southern blot analysis suggested that multiple copies of such genes are likely to occur in the rice and in other plant genomes.  相似文献   

19.
Television microscope and original image treatment system were used for monitoring and recording the ciliary activity (beat frequency) of gill ciliated epithelia of the mussel Mytilus edulis (Bivalvia) and of the rat tracheal ciliated epithelia in response to the following prooxidants: H2O2, Fe+2, Fe+2 + ascorbic acid and NADP-H + ADP + Fe+2. Mussel ciliated cells proved to be more sensitive to the influence of the prooxidants than rat cells. The reactions of ciliated epithelial cells of mollusks and rats to the inducers of lipid peroxidation were not similar to behavioral responses of these cells under the action of low-dose ionizing radiation.  相似文献   

20.
Studies of the effect of primary products of free radical lipid peroxidation (LPO) on the structural-dynamic parameters of natural lipid–protein supramolecular complexes (biomembranes and blood serum lipoproteins) using standard inducers of radical processes in vitro (azo-initiators, transition metal ions, flavin oxidases, etc.) are impossible because of simultaneous production of numerous secondary LPO products that can induce structural changes. The data obtained suggest that phospholipid liposome microviscosity, as assessed by the extent of eximerization of the fluorescent probe pyrene, may significantly differ when oxidation is induced by animal C-15 lipoxygenase (yielding acylhydroperoxides only) and Fe2+–ascorbate system (resulting in simultaneous accumulation of primary and secondary LPO products). It is also shown that liver glutathione S-transferase can effectively reduce hydroperoxy-acyls in phospholipid liposomes and liver microsomes without their preliminary hydrolysis with phospholipase A2. An enzymatic system is proposed for a cascade of enzymatic reactions simulating lipohydroperoxide metabolism in living cells, including successive free radical oxidation of phosphatidyl-choline polyenoic acyls, reduction of their hydroperoxy-derivatives, and hydrolysis of fatty acid residues in the course of catalysis mediated by animal C-15 lipoxygenase, glutathione S-transferase, and phospholipase A2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号