首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CA-125 (coelomic epithelium-related antigen) forms the extracellular portion of transmembrane mucin 16 (MUC16). It is shed after proteolytic degradation. Due to structural heterogeneity, CA-125 ligand capacity and biological roles are not yet understood. In this study, we assessed CA-125 as a ligand for dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN), which is a C-type lectin showing specificity for mannosylated and fucosylated structures. It plays a role as a pattern recognition molecule for viral and bacterial glycans or as an adhesion receptor. We probed a human DC-SIGN-Fc chimera with CA-125 of fetal or cancer origin using solid- or fluid-phase binding and inhibition assays. The results showed that DC-SIGN binds to CA-125 of fetal origin and that this interaction is carbohydrate-dependent. By contrast, cancerderived CA-125 displayed negligible binding. Inhibition assays indicated differences in the potency of CA-125 to interfere with DC-SIGN binding to pathogen-related glycoconjugates, such as mannan and Helicobacter pylori antigens. The differences in ligand properties between CA-125 of fetal and cancer origin may be due to specificities of glycosylation. This might influence various functions of dendritic cells based on their subset diversity and maturation-related functional capacity.  相似文献   

2.
DC-SIGN (dendritic cell specific intracellular adhesion molecule 3 grabbing non-integrin) or CD209 is a type II transmembrane protein and one of several C-type lectin receptors expressed by dendritic cell subsets, which bind to high mannose glycoproteins promoting their endocytosis and potential degradation. DC-SIGN also mediates attachment of HIV to dendritic cells and binding to this receptor can subsequently lead to endocytosis or enhancement of CD4/CCR5-dependent infection. The latter was proposed to be facilitated by an interaction between DC-SIGN and CD4. Endocytosis of HIV virions does not necessarily lead to their complete degradation. A proportion of the virions remain infective and can be later presented to T cells mediating their infection in trans. Previously, the extracellular domain of recombinant DC-SIGN has been shown to assemble as tetramers and in the current study we use a short range covalent cross-linker and show that DC-SIGN exists as tetramers on the surface of immature monocyte-derived dendritic cells. There was no evidence of direct binding between DC-SIGN and CD4 either by cross-linking or by fluorescence resonance energy transfer measurements suggesting that there is no constitutive association of the majority of these proteins in the membrane. Importantly we also show that the tetrameric complexes, in contrast to DC-SIGN monomers, bind with high affinity to high mannose glycoproteins such as mannan or HIV gp120 suggesting that such an assembly is required for high affinity binding of glycoproteins to DC-SIGN, providing the first direct evidence that DC-SIGN tetramers are essential for high affinity interactions with pathogens like HIV.  相似文献   

3.
The C-type lectins DC-SIGN and DC-SIGNR efficiently bind human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) strains and can transmit bound virus to adjacent CD4-positive cells. DC-SIGN also binds efficiently to the Ebola virus glycoprotein, enhancing Ebola virus infection. DC-SIGN is thought to be responsible for the ability of dendritic cells (DCs) to capture HIV and transmit it to T cells, thus promoting HIV dissemination in vitro and perhaps in vivo as well. To investigate DC-SIGN function and expression levels on DCs, we characterized a panel of monoclonal antibodies (MAbs) directed against the carbohydrate recognition domain of DC-SIGN. Using quantitative fluorescence-activated cell sorter technology, we found that DC-SIGN is highly expressed on immature monocyte-derived DCs, with at least 100,000 copies and often in excess of 250,000 copies per DC. There was modest variation (three- to fourfold) in DC-SIGN expression levels between individuals and between DCs isolated from the same individual at different times. Several MAbs efficiently blocked virus binding to cell lines expressing human or rhesus DC-SIGN, preventing HIV and SIV transmission. Interactions with Ebola virus pseudotypes were also blocked efficiently. Despite their ability to block virus-DC-SIGN interactions on cell lines, these antibodies only inhibited transmission of virus from DCs by approximately 50% or less. These results indicate that factors other than DC-SIGN may play important roles in the ability of DCs to capture and transmit HIV.  相似文献   

4.
DC-SIGN, a C-type lectin receptor expressed in dendritic cells (DCs), has been identified as a receptor for human immunodeficiency virus type 1, hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, and the SARS coronavirus. We used H5N1 pseudotyped and reverse-genetics (RG) virus particles to study their ability to bind with DC-SIGN. Electronic microscopy and functional assay results indicate that pseudotyped viruses containing both HA and NA proteins express hemagglutination and are capable of infecting cells expressing α-2,3-linked sialic acid receptors. Results from a capture assay show that DC-SIGN-expressing cells (including B-THP-1/DC-SIGN and T-THP-1/DC-SIGN) and peripheral blood dendritic cells are capable of transferring H5N1 pseudotyped and RG virus particles to target cells; this action can be blocked by anti-DC-SIGN monoclonal antibodies. In summary, (a) DC-SIGN acts as a capture or attachment molecule for avian H5N1 virus, and (b) DC-SIGN mediates infections in cis and in trans.  相似文献   

5.
A toxic injury such as a decrease in the number of immature dendritic cells caused by a cytotoxic effect or a disturbance in their maturation process can be responsible for immunodepression. There is a need to improve in vitro assays on human dendritic cells used to detect and evaluate adverse effects of xenobiotics. Two aspects were explored in this work: cytotoxic effects of xenobiotics on immature dendritic cells, and the interference of xenobiotics with dendritic cell maturation. Dendritic cells of two different origins were tested. Dendritic cells obtained either from umbilical cord blood CD34+ cells or, for the first time, from umbilical cord blood monocytes. The cytotoxicity assay on immature dendritic cells has been improved. For the study of the potential adverse effects of xenobiotics on the maturation process of dendritic cells, several parameters were selected such as expression of markers (CD86, CD83, HLA-DR), secretion of interleukins 10 and 12, and proliferation of autologous lymphocytes. The relevance and the efficiency of the protocol applied were tested using two mycotoxins, T-2 toxin and deoxynivalence, DON, which are known to be immunosuppressive, and one phycotoxin, domoic acid, which is known not to have any immunotoxic effect. Assays using umbilical cord monocyte dendritic cell cultures with the protocol defined in this work, which involves a cytotoxicity study followed by evaluation of several markers of adverse effects on the dendritic cell maturation process, revealed their usefulness for investigating xenobiotic immunotoxicity toward immune primary reactions.  相似文献   

6.
Trichomoniasis caused by the parasitic protozoan Trichomonas vaginalis is the most common sexually transmitted disease in the world. Dendritic cells are antigen presenting cells that initiate immune responses by directing the activation and differentiation of naïve T cells. In this study, we analyzed the effect of Trichomonas vaginalis-derived Secretory Products on the differentiation and function of dendritic cells. Differentiation of bone marrow-derived dendritic cells in the presence of T. vaginalis-derived Secretory Products resulted in inhibition of lipopolysaccharide-induced maturation of dendritic cells, down-regulation of IL-12, and up-regulation of IL-10. The protein components of T. vaginalis-derived Secretory Products were shown to be responsible for altered function of bone marrow-derived dendritic cells. Chromatin immunoprecipitation assay demonstrated that IL-12 expression was regulated at the chromatin level in T. vaginalis-derived Secretory Productstreated dendritic cells. Our results demonstrated that T. vaginalis-derived Secretory Products modulate the maturation and cytokine production of dendritic cells leading to immune tolerance. [BMB Reports 2015; 48(2): 103-108]  相似文献   

7.
Xing W  Wu S  Yuan X  Chen Q  Shen X  He F  Bian J  Lei P  Zhu H  Wang S  Shen G 《Cellular immunology》2009,254(2):135-141
Herpes simplex virus thymidine kinase (HSV-TK) gene and dendritic cells (DC) have been used as the pioneering in cancer therapy. HSV-TK gene can induce apoptosis and necrosis in tumor cells in the presence of the non-toxic prodrug ganciclovir (GCV). We investigated the anti-tumor effect of DC vaccination by introducing dying cells from HSV-TK gene treatment as an adjuvant. HepG2-TK cell line was established by transfecting human hepatoma cell line HepG2 (HLA-A2 positive) with HSV-TK gene. Dying tumor cells were generated by culturing HepG2-TK cells with GCV. After engulfed dying cells efficiently, immature DCs (imDC) derived from human monocytes were fully matured and elicited marked proliferation and cytotoxicity against HLA matched HepG2 cells in autologous peripheral blood mononuclear cells (PBMC). It also implied that HepG2 specific CTLs played an important role in the cytotoxicity which was primarily depended on Th1 responses. Given the feasibility of inducing dying cells by HSV-TK/GCV in vivo, our results suggest an effective method in clinical human hepatocellular carcinoma (HCC) treatment by an in vitro model of applying HSV-TK gene modified human tumor cells integrated with DC vaccination.  相似文献   

8.
Neospora caninum is an intracellular protozoan pathogen that causes abortion in cattle. We studied how the interaction between murine conventional dendritic cells or macrophages and N. caninum influences the generation of cell-mediated immunity against the parasite. We first explored the invasion and survival ability of N. caninum in dendritic cells and macrophages. We observed that protozoa rapidly invaded and proliferated into these two cell populations. We then investigated how Neospora-exposed macrophages or dendritic cells distinguish between viable and non-viable (heat-killed tachyzoites and antigenic extract) parasites. Viable tachyzoites and antigenic extract, but not killed parasites, altered the phenotype of immature dendritic cells. Dendritic cells infected with viable parasites down-regulated the expression of MHC-II, CD40, CD80 and CD86 whereas dendritic cells exposed to N. caninum antigenic extract up-regulated the expression of MHC-II and CD40 and down-regulated CD80 and CD86 expression. Moreover, only viable tachyzoites and antigenic extract induced IL-12 synthesis by dendritic cells. MHC-II expression was up-regulated and CD86 expression was down-regulated at the surface of macrophages, regardless of the parasitic form was encountered. However, IL-12 secretion by macrophages was only observed under conditions using viable and heat-killed parasite. We then analysed how macrophages and dendritic cells were involved in inducing T-cell responses. T lymphocyte IFN-γ-secretion in correlation with IL-12 production occurred after interactions between T cells and dendritic cells exposed to viable tachyzoites or antigenic extract. By contrast, for macrophages IFN-γ production was IL-12-independent and only occurred after interactions between T cells and macrophages exposed to antigenic extract. Thus, N. caninum-induced activation of murine dendritic cells, but not that of macrophages, was associated with T cell IFN-γ production after IL-12 secretion.  相似文献   

9.
Lactobacillus plantarum can exert additional probiotic effects via regulation of human immune system. However, the direct interaction between probiotics and the receptors of immune cells still needs to be further studied. To identify the receptor of dendritic cells during the interaction with L. plantarum. Dendritic cells were pretreated with L. plantarum and the antibody to dendritic cells specific intercellular adhesion molecule-grabbing nonintegrin (DC-SIGN), toll like receptor (TLR)-2 and TLR-4. The maturation of immature dendritic cells, cytokine production, and modulation of T cells were studied by flow cytometry. Adherence between L. plantarum and dendritic cells were studied by ELISA, flow cytometry, and Western blot. L. plantarum could mature dendritic cells by up-regulating MHC-II and CD80 and CD86. Anti-inflammatory interlectin (IL)-10 and IL-6 was up-regulated and pro-inflammatory IL-12p70 was retro-regulated by L. plantarum. L. plantarum may interact with DC-SIGN and modulate of T to differentiate into IL-4 producing T cells. The interaction of L. plantarum and DC-SIGN and the biological effects could be blocked by EDTA and antibody to DC-SIGN. Effects of L. plantarum were concentration-dependent. L. plantarum could bind to DC-SIGN to improve DC maturation at different ratios, regulate the secretion of anti-inflammatory and pro-inflammatory cytokines, and induce the polarization of interlectin-4-producing T cells.  相似文献   

10.
Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1–3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.  相似文献   

11.
The dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and DC-SIGN-related (DC-SIGNR) molecules on the cell surface are known to enhance human immunodeficiency virus type 1 (HIV-1) infection by capturing the virions and transmitting them to CD4+ T-cell, a process termed trans-infection. The neck region and carbohydrate recognition domain of the two proteins are important for efficient binding to the HIV-1 envelope protein. DC-SIGNR is polymorphic in Exons 4 and 5 that encode the neck region and carbohydrate recognition domain, respectively; the former contains a variable number of tandem repeats, and the latter the SNP (rs2277998). Since it remains unclear whether the DC-SIGNR polymorphism is related to the risk of HIV-1 infection, we tested possible effects of the polymorphism on HIV-1 trans-infection efficiency, by constructing six kinds of cDNAs encoding DC-SIGNR variants with various numbers of repeat units and various SNP. We were able to express the variants on the surface of Raji cells, a human B cell line. Flow cytometry showed that all the tested DC-SIGNR molecules were efficiently expressed on the cell surface at various levels; the assay for HIV trans-infection efficacy showed that all the tested variants had that activity with different efficacy levels. We found a correlation between the HIV trans-infection efficiency and the mean fluorescent intensity of DC-SIGNR expression (R2 = 0.95). Thus, our results suggest that the variation of the tested DC-SIGNR genotypes affects the efficacy of trans-infection by affecting the amounts of the protein expressed on the cell surface.  相似文献   

12.

Background

Sexual transmission accounts for the majority of HIV-1 infections. In over 75% of cases, infection is initiated by a single variant (transmitted/founder virus). However, the determinants of virus selection during transmission are unknown. Host cell-cell interactions in the mucosa may be critical in regulating susceptibility to infection. We hypothesized in this study that specific immune modulators secreted by uterine epithelial cells modulate susceptibility of dendritic cells (DC) to infection with HIV-1.

Methodology/Principal Findings

Here we report that uterine epithelial cell secretions (i.e. conditioned medium, CM) decreased DC-SIGN expression on immature dendritic cells via a transforming growth factor beta (TGF-β) mechanism. Further, CM inhibited dendritic cell-mediated trans infection of HIV-1 expressing envelope proteins of prototypic reference. Similarly, CM inhibited trans infection of HIV-1 constructs expressing envelopes of transmitted/founder viruses, variants that are selected during sexual transmission. In contrast, whereas recombinant TGF- β1 inhibited trans infection of prototypic reference HIV-1 by dendritic cells, TGF-β1 had a minimal effect on trans infection of transmitted/founder variants irrespective of the reporter system used to measure trans infection.

Conclusions/Significance

Our results provide the first direct evidence for uterine epithelial cell regulation of dendritic cell transmission of infection with reference and transmitted/founder HIV-1 variants. These findings have immediate implications for designing strategies to prevent sexual transmission of HIV-1.  相似文献   

13.
Wu T  Guo S  Wang J  Li L  Xu L  Liu P  Ma S  Zhang J  Xu L  Luo Y 《Cellular immunology》2011,272(1):94-101
The aim of the study was to investigate the interaction between manLAM and DC-SIGN influencing DCs maturation and downstream immune response using small interfering RNA-expressing lentiviral vectors to specifically knockdown DC-SIGN. Our data indicated that DC-SIGN knockdown alone in DCs did not affect the maturation or the immunological function of lipopolysacharide (LPS)-activated DCs. Surface molecules were dramatically down-regulated in DCs primed with manLAM but not in mock control DCs (P < 0.05). Meanwhile, manLAM enhanced the production of the immunosuppressive cytokine IL-10 in DCs (P < 0.05). The level of IFN-γ was significantly down-regulated in the supernatants of naive T cells after co-cultured with DCs primed with manLAM (P < 0.05). We demonstrated that DCs primed with manLAM may partially impair maturation phenotypes and immune response in LPS-activated DCs. However, the alterations of DCs function and downstream immune response caused by manLAM were reversed by the knockdown of DC-SIGN.  相似文献   

14.
Mesenchymal stem cells (MSCs) possess immunosuppressive properties. But also fully differentiated human renal tubular epithelial cells (RTECs) are able to modulate T-cell proliferation in vitro. In this study we compared two MSC populations, human adipose derived stem cells (ASCs) and human amniotic mesenchymal stromal cells (hAMSCs), and RTECs regarding their potential to inhibit monocyte-derived dendritic cell (DC) differentiation and maturation in indirect co-culture.In the presence of hAMSCs and RTECs, monocytes stimulated to undergo DC differentiation were inhibited to acquire surface phenotype of immature and mature DCs. In contrast, ASCs showed only limited suppressive capacity. Secretion of IL-12p70 was suppressed in hAMSC co-cultures and high IL-10 levels were detected in all co-cultures. Prostaglandin E2 was found in ASC and hAMSC co-cultures, whereas soluble human leukocyte antigen-G was highly elevated only in RTEC co-cultures. Thus, inhibition of DC generation by MSCs and RTECs might be mediated by different soluble factors.  相似文献   

15.
The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation.  相似文献   

16.
Although human papillomavirus (HPV) DNA is detected in the majority of squamous intraepithelial lesions (SIL) and carcinoma (SCC) of the uterine cervix, the persistence or progression of cervical lesions suggest that viral antigens are not adequately presented to the immune system. This hypothesis is reinforced by the observation that most SIL show quantitative and functional alterations of Langerhans cells (LC). The aim of this study was to determine whether prostaglandins (PG) may affect LC density in the cervical (pre)neoplastic epithelium. We first demonstrated that the epithelial expression of PGE2 enzymatic pathways, including cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1), is higher in SIL and SCC compared to the normal exocervical epithelium and inversely correlated to the density of CD1a-positive LC. By using cell migration assays, we next showed that the motility of immature dendritic cells (DC) and DC partially differentiated in vitro in the presence of PGE2 are differentially affected by PGE2. Immature DC had a lower ability to migrate in the presence of PGE2 compared to DC generated in vitro in the presence of PGE2. Finally, we showed that PGE2 induced a cytokine production profile and phenotypical features of tolerogenic DC, suggesting that the altered expression of PGE2 enzymatic pathways may promote the cervical carcinogenesis by favouring (pre)cancer immunotolerance. M. Herfs and L. Herman contributed equally to this work.  相似文献   

17.
In melanoma patients, CD8+ cytotoxic T cells have been found recognizing self-proteins of which the expression is restricted to the melanocytic lineage. These melanocyte differentiation antigens are expressed in normal melanocytes as well as in 80–100% of primary and metastatic melanoma. In this report, six HLA-A*0201–subtyped metastatic melanoma patients vaccinated with dendritic cells (DCs) pulsed with autologous tumor lysates and keyhole limpet hemocyanin (KLH) were screened for the presence of CD8+ T cells specific for three HLA-A*0201–binding peptides derived from the melanosomal antigens MART-1/Melan-A, gp100, and tyrosinase. For this purpose, nonstimulated as well as in vitro peptide-stimulated peripheral blood mononuclear cells (PBMCs) were tested for peptide-specific IFN- release by enzyme-linked immunosorbent spot (ELISpot) assays. Furthermore, expression of the melanosomal antigens MART-1/Melan-A, gp100, and tyrosinase in tumor lesions was analyzed by immunohistochemistry before and after vaccination. We also used the ELISpot technique to investigate whether KLH-specific T cells were induced and whether these cells released type 1 (IFN-) and/or type 2 (IL-13) cytokines. Our data show induction of CD8+ T cells specific for the melanosomal peptides MART-1/Melan-A27–35 or tyrosinase1–9, as well as IFN-–releasing KLH-specific T cells, in two of six vaccinated melanoma patients, but do not support an association between the induction of these T cells and clinical responses.  相似文献   

18.
Macrophages (M?) and dendritic cells (DC) are the major target cell populations of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a method employed by multiple pathogens to ensure their survival in the infected cell. Leishmania has been shown to protect M? and neutrophils from both natural and induced apoptosis. As shown in this study, apoptosis in monocyte-derived dendritic cells (moDC) induced by treatment with camptothecin was downregulated by coincubation with L. mexicana, as detected by morphological analysis of cell nuclei, TUNEL assay, gel electrophoresis of low molecular weight DNA fragments, and annexin V binding to phosphatidylserine. The observed antiapoptotic effect was found to be associated with a significant reduction of caspase-3 activity in moDC. The capacity of L. mexicana to delay apoptosis induction in the infected moDC may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells.  相似文献   

19.
目的通过分析过敏孕妇脐血单核细胞来源树突状细胞(Dendritic cells,DCs)分泌细胞因子水平与正常孕妇来源DCs的差异,了解过敏来源树突状细胞功能的特点,为过敏性疾病的细胞学研究奠定基础,并为防治过敏性疾病寻找最佳时期。方法分离过敏及正常孕妇脐血内单核细胞,在GM-CSF及IL-4的作用下诱导生成未成熟DCs,在培养的第7天加入LPS(1μg/ml)诱导细胞成熟,阴性对照组仅加入细胞因子及培养基。于培养第9天收集培养上清,用ELISA法检测培养上清中IL-12p70及IL-10的分泌水平。结果过敏孕妇来源树突状细胞分泌细胞因子IL-12p70及IL-10的能力明显低于正常孕妇组。结论过敏孕妇来源树突状细胞可能存在功能上的缺陷,这可能是导致有过敏家庭史婴儿易患过敏性疾病的细胞学基础,孕期可能为防治过敏性疾病发生的最佳时期。  相似文献   

20.
The in vitro restoring effects of a thymic hormone preparation, TP-1, on defective monocyte and dendritic cell function in patients with head and neck squamous cell carcinoma (HNSCC) have been examined. TheN-formylmethionyl-leucyl-phenylalanine(fMLF)-induced polarization of monocytes isolated from the peripheral blood was significantly lower (a mean of 19%) than the polarization of monocytes isolated from healthy controls (a mean of 33%). After the in vitro addition of TP-1 this defective polarization was improved to the normal value of 33% polarized monocytes. The capability of dendritic cells prepared from the blood to form cellular clusters with allogeneic cells was impaired in 26/44 patients. In vitro addition of TP-1 again had restoring effects. The original defective dendritic cell clustering of 97 clusters/six microscopic fields (mean) was improved to a value of 121 clusters. The defects in monocyte polarization and clustering of dendritic cells could be ascribed to the presence in serum of a tumor-derived low-molecularmass factor low-M r factor; <25 kDa) sharing structural homology with p15E, the capsular protein of murine and feline leukemogenic retroviruses. The incubation of low-M r factor from the serum of HNSCC patients with healthy donor monocytes resulted in a significantly higher inhibition of fMLF-induced monocyte polarization than did incubation with control low-M r factor (a mean of 42 versus 16% inhibition). This suppressive effect of patient low-M r factor was abrogated with a mixture of two monoclonal antibodies against p15E as well as with TP-1. The observations here reported on the in vitro effects of TP-1 on depressed monocyte and dendritic cell function in HNSCC have provided one of the rationales for a TP-1 therapeutic pilot trial recently started in HNSCC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号