首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Modification of small molecules and proteins by methyltransferases affects a wide range of biological processes. Here, we report an enzyme-coupled continuous spectrophotometric assay to quantitatively characterize S-adenosyl-L-methionine (AdoMet/SAM)-dependent methyltransferase activity. In this assay, S-adenosyl-L-homocysteine (AdoHcy/SAH), the transmethylation product of AdoMet-dependent methyltransferases, is hydrolyzed to S-ribosylhomocysteine and adenine by recombinant S-adenosylhomocysteine/5'-methylthioadenosine nucleosidase (SAHN/MTAN, EC 3.2.2.9). Subsequently, adenine generated from AdoHcy is further hydrolyzed to hypoxanthine and ammonia by recombinant adenine deaminase (EC 3.5.4.2). This deamination is associated with a decrease in absorbance at 265 nm that can be monitored continuously. Coupling enzymes are recombinant and easily purified. The utility of this assay was shown using recombinant rat protein arginine N-methyltransferase 1 (PRMT1, EC 2.1.1.125), which catalyzes the mono- and dimethylation of guanidino nitrogens of arginine residues in select proteins. Using this assay, the kinetic parameters of PRMT1 with three synthetic peptides were determined. An advantage of this assay is the destruction of AdoHcy by AdoHcy nucleosidase, which alleviates AdoHcy product feedback inhibition of S-adenosylmethionine-dependent methyltransferases. Finally, this method may be used to assay other enzymes that produce AdoHcy, 5'-methylthioadenosine, or compounds that can be cleaved by AdoHcy nucleosidase.  相似文献   

2.
A high-throughput, competitive fluorescence polarization immunoassay has been developed for the detection of methyltransferase activity. The assay was designed to detect S-adenosylhomocysteine (AdoHcy), a product of all S-adenosylmethionine (AdoMet)-utilizing methyltransferase reactions. We employed commercially available anti-AdoHcy antibody and fluorescein-AdoHcy conjugate tracer to measure AdoHcy generated as a result of methyltransferase activity. AdoHcy competes with tracer in the antibody/tracer complex. The release of tracer results in a decrease in fluorescence polarization. Under optimized conditions, AdoHcy and AdoMet titrations demonstrated that the antibody had more than a 150-fold preference for binding AdoHcy relative to AdoMet. Mock methyltransferase reactions using both AdoHcy and AdoMet indicated that the assay tolerated 1 to 3 microM AdoMet. The limit of detection was approximately 5 nM (0.15 pmol) AdoHcy in the presence of 3 muM AdoMet. To validate the assay's ability to quantitate methyltransferase activity, the methyltransferase catechol-O-methyltransferase (COMT) and a known selective inhibitor of COMT activity were used in proof-of-principle experiments. A time- and enzyme concentration-dependent decrease in fluorescence polarization was observed in the COMT assay that was developed. The IC(50) value obtained using a selective COMT inhibitor was consistent with previously published data. Thus, this sensitive and homogeneous assay is amenable for screening compounds for inhibitors of methyltransferase activity.  相似文献   

3.
S-Adenosyl-L-methionine (AdoMet) which is biologically synthesized by AdoMet synthetase bears an S configuration at the sulfur atom. The chiral sulfonium spontaneously racemizes to form a mixture of S and R isomers of AdoMet under physiological conditions or normal storage conditions. The chirality of AdoMet greatly affects its activity; the R isomer is not accepted as a substrate for AdoMet-dependent methyltransferases. We report a stereospecific colorimetric assay for (S,S)-adenosylmethionine quantification based on an enzyme-coupled reaction in which (S,S)-AdoMet reacts with 2-nitro-5-thiobenzoic acid to form AdoHcy and 2-nitro-5-methylthiobenzoic acid. The transformation is catalyzed by recombinant human thiopurine S-methyltransferase (TPMT, EC 2.1.1.67) and is associated with a large spectral change at 410 nm. Accumulation of the S-adenosylhomocysteine (AdoHcy) product, a feedback inhibitor of TPMT, slows the assay. AdoHcy nucleosidase (EC 3.2.2.9) irreversibly cleaves AdoHcy to adenine and S-ribosylhomocysteine, significantly shortening the assay time to less than 10 min. The assay is linear from 5 to at least 60 microM (S,S)-AdoMet.  相似文献   

4.
Aim of this article is to review the topic of epigenetic control of gene expression, especially regarding DNA methylation, in chronic kidney disease and uremia. Hyperhomocysteinemia is considered an independent cardiovascular risk factor, although the most recent intervention studies utilizing folic acid are negative. The accumulation of homocysteine in blood leads to an intracellular increase of S-adenosylhomocysteine (AdoHcy), a powerful competitive methyltransferase inhibitor, which is itself considered a predictor of cardiovascular events. The extent of methylation inhibition of each individual methyltransferase depends on the methyl donor S-adenosylmethionine (AdoMet) availability, on the [AdoMet]/[AdoHcy] ratio, and on the individual Km value for AdoMet and Ki for AdoHcy. DNA methyltransferases are among the principal targets of hyperhomocysteinemia, as studies in several cell culture and animal models, as well as in humans, almost unequivocally show. In vivo, DNA methylation may be also influenced by various factors in different tissues, for example by rate of cell growth, folate status, etc. and importantly inflammation.  相似文献   

5.
S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed.  相似文献   

6.
tRNA methylation complexes consisting of S-adenosylmethionine (AdoMet) synthetase, tRNA methylases, and S-adenosylhomocysteine (AdoHcy) hydrolase have been prepared from rat Novikoff hepatoma cells. The existence of the ternary enzyme complex is supported by dissociation and reconstitution of the ternany tRNA methylation complexes. In rat prostate and testis, two isozymes each for AdoMet synthetase and AdoHcy hydrolase are detected. The Km (methionine) values for the two AdoMet synthetases are 3.1 and 23.7 μm and the Km (adenosine) values for the two AdoHcy hydrolases are 0.33 and 1.8 μm. Correspondingly, two groups of methylation complexes are detectable, sedimenting in a sucrose gradient as 7 S and 8 S. The 7 S complexes are composed of AdoMet synthetase and AdoHcy hydrolase with the higher Km values, and the 8 S complexes are composed of the respective isozymes with the lower Km values. tRNA methylation complexes belong to the 8 S group. In hormone-depleted rat prostates and testes following hypophysectomy, the specific activities of AdoMet synthetases, tRNA methylases, and AdoHcy hydrolases are decreased severely, but are restored promptly after administration of testosterone. Thus, methylation enzymes are responsive to the regulation by steroid hormone. AdoHcy hydrolases from hormone-depleted tissues are unstable, and ternary tRNA methylation complexes are easily dissociable into individual activities. The stability of AdoHcy hydrolases is markedly improved by testosterone, and the integrity of ternary tRNA methylation complexes is maintained in the presence of testosterone. These results suggest that AdoHcy hydrolases are the primary target enzymes in adrogen regulation of methylation complexes.  相似文献   

7.
DNA methylation is linked to homocysteine metabolism through the generation of S-adenosylmethionine (AdoMet) and S-Adenosylhomocysteine (AdoHcy). The ratio of AdoMet/AdoHcy is often considered an indicator of tissue methylation capacity. The goal of this study is to determine the relationship of tissue AdoMet and AdoHcy concentrations to allele-specific methylation and expression of genomically imprinted H19/Igf2. Expression of H19/Igf2 is regulated by a differentially methylated domain (DMD), with H19 paternally imprinted and Igf2 maternally imprinted. F1 hybrid C57BL/6J x Castaneous/EiJ (Cast) mice with (+/−), and without (+/+), heterozygous disruption of cystathionine-β-synthase (Cbs) were fed a control diet or a diet (called HH) to induce hyperhomocysteinemia and changes in tissue AdoMet and AdoHcy. F1 Cast x Cbs+/− mice fed the HH diet had significantly higher plasma total homocysteine concentrations, higher liver AdoHcy, and lower AdoMet/AdoHcy ratios and this was accompanied by lower liver maternal H19 DMD allele methylation, lower liver Igf2 mRNA levels, and loss of Igf2 maternal imprinting. In contrast, we found no significant differences in AdoMet and AdoHcy in brain between the diet groups but F1 Cast x Cbs+/− mice fed the HH diet had higher maternal H19 DMD methylation and lower H19 mRNA levels in brain. A significant negative relationship between AdoHcy and maternal H19 DMD allele methylation was found in liver but not in brain. These findings suggest the relationship of AdoMet and AdoHcy to gene-specific DNA methylation is tissue-specific and that changes in DNA methylation can occur without changes in AdoMet and AdoHcy.  相似文献   

8.
S-Adenosyl-l-homocysteine (AdoHcy) background signal in reactions with protein arginine N-methyltransferase 1 is investigated using an ultrahigh-performance liquid chromatography tandem mass spectrometry assay that measures AdoHcy. We identify three sources of AdoHcy background: enzymatic automethylation, AdoHcy contamination in commercial S-adenosyl-l-methionine (AdoMet), and nonenzymatic pseudo-first-order formation of AdoHcy from AdoMet. We propose a potential mechanism for the nonenzymatic production of AdoHcy and illustrate strategies for mitigating background AdoHcy that can be applied to any assay.  相似文献   

9.
S-Adenosylmethionine (AdoMet) is the methyl donor of numerous methylation reactions. The current model is that an increased concentration of AdoMet stimulates DNA methyltransferase reactions, triggering hypermethylation and protecting the genome against global hypomethylation, a hallmark of cancer. Using an assay of active demethylation in HEK 293 cells, we show that AdoMet inhibits active demethylation and expression of an ectopically methylated CMV-GFP (green fluorescent protein) plasmid in a dose-dependent manner. The inhibition of GFP expression is specific to methylated GFP; AdoMet does not inhibit an identical but unmethylated CMV-GFP plasmid. S-Adenosylhomocysteine (AdoHcy), the product of methyltransferase reactions utilizing AdoMet does not inhibit demethylation or expression of CMV-GFP. In vitro, AdoMet but not AdoHcy inhibits methylated DNA-binding protein 2/DNA demethylase as well as endogenous demethylase activity extracted from HEK 293, suggesting that AdoMet directly inhibits demethylase activity, and that the methyl residue on AdoMet is required for its interaction with demethylase. Taken together, our data support an alternative mechanism of action for AdoMet as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA.  相似文献   

10.
In the malarial parasite Plasmodium falciparum, a multifunctional phosphoethanolamine methyltransferase (PfPMT) catalyzes the methylation of phosphoethanolamine (pEA) to phosphocholine for membrane biogenesis. This pathway is also found in plant and nematodes, but PMT from these organisms use multiple methyltransferase domains for the S-adenosylmethionine (AdoMet) reactions. Because PfPMT is essential for normal growth and survival of Plasmodium and is not found in humans, it is an antiparasitic target. Here we describe the 1.55 Å resolution crystal structure of PfPMT in complex with AdoMet by single-wavelength anomalous dispersion phasing. In addition, 1.19–1.52 Å resolution structures of PfPMT with pEA (substrate), phosphocholine (product), sinefungin (inhibitor), and both pEA and S-adenosylhomocysteine bound were determined. These structures suggest that domain rearrangements occur upon ligand binding and provide insight on active site architecture defining the AdoMet and phosphobase binding sites. Functional characterization of 27 site-directed mutants identifies critical active site residues and suggests that Tyr-19 and His-132 form a catalytic dyad. Kinetic analysis, isothermal titration calorimetry, and protein crystallography of the Y19F and H132A mutants suggest a reaction mechanism for the PMT. Not only are Tyr-19 and His-132 required for phosphobase methylation, but they also form a “catalytic” latch that locks ligands in the active site and orders the site for catalysis. This study provides the first insight on this antiparasitic target enzyme essential for survival of the malaria parasite; however, further studies of the multidomain PMT from plants and nematodes are needed to understand the evolutionary division of metabolic function in the phosphobase pathway of these organisms.  相似文献   

11.
The concentrations of S-adenosylmethionine (AdoMet), S-adenosylhomocysteine (AdoHcy), and various methyltransferases were determined in the cerebrum, cerebellum, and liver of rats during development and aging. The liver contained from 3 to 7 and from 10 to 15 nmol AdoHcy per gram in young and adult rats, respectively. The AdoMet concentration was 60 to 90 nmol/g liver from rats of the same age and sex. It did not vary significantly with age. In the brain the AdoMet concentration was 45 to 50 nmol/g at birth and decreased to 20 nmol/ g tissue with maturity of the organ. The level of AdoHcy in this organ was less than 1 nmol/g tissue throughout the life-span of the rat. Since the ratio of AdoMet to AdoHcy is relatively high, the rate of methylation of histones, DNA, or phosphatidylethanolamine in the liver or brain was not significantly influenced by AdoHcy. Under normal nutritional conditions, the tissue concentration of AdoMet is far above the Km values of histone and phosphatidylethanolamine methyltransferases. The levels of activity of these enzymes in liver and brain did not correlated with the cellular concentration of AdoHcy. Thi histone methyltransferase activity was elevated in rapidly proliferating tissues and declined markedly in the absence of histone biosynthesis. Phosphatidylethanolamine methyltransferase activity was elevated during development of the liver. The specific activity of the AdoHcy hydrolase remained relatively constant in the rat brain and liver. The activity of this enzyme was 10 times higher in liver than in brain, yet the concentration of AdoHcy was much lower in the latter organ. The tissue levels of this compound are evidently dependent on the rates of removal of homocysteine and adenosine. Adenosine deaminase was present in the liver and brain at relatively high concentrations, particularly during development.  相似文献   

12.
Spontaneous protein deamidation of labile asparagines (Asn), generating abnormal l-isoaspartyl residues (IsoAsp), is associated with cell aging and enhanced by an oxidative microenvironment. The presence of isopeptide bonds impairs protein structure/function. To minimize the damage, IsoAsp can be “repaired” by the protein l-isoaspartyl/d-aspartyl O-methyltransferase (PIMT) and S-adenosylmethionine (AdoMet) is the methyl donor of this reaction. PIMT is a repair enzyme that initiates the conversion of l-isoAsp (or d-Asp) residues to l-Asp residues. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease principally affecting motor neurons. The condition of oxidative stress reported in familial and sporadic forms of ALS prompted us to investigate Asn deamidation in ALS tissue. Erythrocytes (RBCs) were selected as a model system since they are unable to replace damaged proteins and protein methylesterification is virtually the only AdoMet-consuming reaction operating in these cells. Our data show that, in vitro assay, abnormal IsoAsp residues were significantly higher in ALS patients erythrocyte membrane proteins with an increased methyl accepting capability relative to controls (p < 0.05). Moreover, we observed a reduction in AdoMet levels, while AdoHcy concentration was comparable to that detected in the control, resulting in a lower [AdoMet]/[AdoHcy] ratio. Then, the accumulation of altered aspartyl residues in ALS patients is probably related to a reduced efficiency of the S-adenosylmethionine (AdoMet)-dependent repair system causing increased protein instability at Asn sites. The increase of abnormal residues represents a new protein alteration that may be present not only in red blood cells but also in other cell types of patients suffering from ALS.  相似文献   

13.
Protein methyltransferases (PMTs) catalyze arginine and lysine methylation of diverse histone and nonhistone targets. These posttranslational modifications play essential roles in regulating multiple cellular events in an epigenetic manner. In the recent process of defining PMT targets, S-adenosyl-L-methionine (SAM) analogues have emerged as powerful small molecule probes to label and profile PMT targets. To examine efficiently the reactivity of PMTs and their variants on SAM analogues, we transformed a fluorogenic PMT assay into a ready high throughput screening (HTS) format. The reformulated fluorogenic assay is featured by its uncoupled but more robust character with the first step of accumulation of the commonly-shared reaction byproduct S-adenosyl-L-homocysteine (SAH), followed by SAH-hydrolase-mediated fluorogenic quantification. The HTS readiness and robustness of the assay were demonstrated by its excellent Z' values of 0.83-0.95 for the so-far-examined 8 human PMTs with SAM as a cofactor (PRMT1, PRMT3, CARM1, SUV39H2, SET7/9, SET8, G9a and GLP1). The fluorogenic assay was further implemented to screen the PMTs against five SAM analogues (allyl-SAM, propargyl-SAM, (E)-pent-2-en-4-ynyl-SAM (EnYn-SAM), (E)-hex-2-en-5-ynyl-SAM (Hey-SAM) and 4-propargyloxy-but-2-enyl-SAM (Pob-SAM)). Among the examined 8 × 5 pairs of PMTs and SAM analogues, native SUV39H2, G9a and GLP1 showed promiscuous activity on allyl-SAM. In contrast, the bulky SAM analogues, such as EnYn-SAM, Hey-SAM and Pob-SAM, are inert toward the panel of human PMTs. These findings therefore provide the useful structure-activity guidance to further evolve PMTs and SAM analogues for substrate labeling. The current assay format is ready to screen methyltransferase variants on structurally-diverse SAM analogues.  相似文献   

14.
A fraction of the viral mRNA synthesized in interferon-treated HeLa cells infected with vesicular stomatitis virus (VSV) lacks the 7-methyl group in the 5'-terminal guanosine of the cap; this mRNA is not associated with polyribosomes and does not bind to ribosomes in an assay for initiation of protein synthesis (de Ferra, F., and Baglioni, C. (1981) Virology 112, 426-435). To establish whether this defect in methylation is due to changes in the level of the methyl donor S-adenosylmethionine (AdoMet) and of its competitive inhibitor S-adenosylhomocysteine (AdoHcy), we measured the concentration of these compounds in HeLa cells treated with interferon. An increase in both AdoMet and AdoHcy was detected 3 to 6 h after addition of interferon. The level of these compounds increased gradually and in proportion to the interferon concentration used. With 125 reference units/ml of beta interferon, for example, the AdoHcy concentration increased more than 3-fold and that of AdoMet about 1.5-fold with a consequent change in the AdoHcy/AdoMet ratio. An increased AdoHcy/AdoMet ratio was also found in HeLa cells treated with pure alpha 2 interferon produced in Escherichia coli by recombinant DNA techniques. When the methylation of VSV mRNA was measured in assays carried out with permeabilized virions at the AdoHcy and AdoMet concentrations found in interferon-treated cells, a preferential inhibition of the viral (guanine-7-)methyltransferase activity was observed. Such an inhibition may account for the synthesis of VSV mRNA lacking the 7-methyl group of guanosine in the cap.  相似文献   

15.
A coupled fluorescent assay for histone methyltransferases   总被引:1,自引:0,他引:1  
  相似文献   

16.
Protein arginine N‐methyltransferase (PRMT) dimerization is required for methyl group transfer from the cofactor S‐adenosyl‐L ‐methionine (AdoMet) to arginine residues in protein substrates, forming S‐adenosyl‐L ‐homocysteine (AdoHcy) and methylarginine residues. In this study, we use Förster resonance energy transfer (FRET) to determine dissociation constant (KD) values for dimerization of PRMT1 and PRMT6. By attaching monomeric Cerulean and Citrine fluorescent proteins to their N‐termini, fluorescent PRMTs are formed that exhibit similar enzyme kinetics to unconjugated PRMTs. These fluorescent proteins are used in FRET‐based binding studies in a multi‐well format. In the presence of AdoMet, fluorescent PRMT1 and PRMT6 exhibit 4‐ and 6‐fold lower dimerization KD values, respectively, than in the presence of AdoHcy, suggesting that AdoMet promotes PRMT homodimerization in contrast to AdoHcy. We also find that the dimerization KD values for PRMT1 in the presence of AdoMet or AdoHcy are, respectively, 6‐ and 10‐fold lower than the corresponding values for PRMT6. Considering that the affinity of PRMT6 for AdoHcy is 10‐fold higher than for AdoMet, PRMT6 function may be subject to cofactor‐dependent regulation in cells where the methylation potential (i.e., ratio of AdoMet to AdoHcy) is low. Since PRMT1 affinity for AdoMet and AdoHcy is similar, however, a low methylation potential may not affect PRMT1 function.  相似文献   

17.
Adenosine has been shown to initiate apoptosis through different mechanisms: (i) activation of adenosine receptors, (ii) intracellular conversion to AMP and stimulation of AMP-activated kinase, (iii) conversion to S-adenosylhomocysteine (AdoHcy), which is an inhibitor of S-adenosylmethionine (AdoMet)-dependent methyltransferases. Since the pathways involved are still not completely understood, we further investigated the role of AdoHcy hydrolase in adenosine-induced apoptosis. In HepG2 cells, adenosine induced caspase-like activity and DNA fragmentation, a marker of apoptosis. These effects were potentiated by co-incubation with homocysteine or adenosine deaminase inhibitor, pentostatin, and were mimicked by inhibition of AdoHcy hydrolase by adenosine-2',3'-dialdehyde (Adox). Adenosine-induced effects were significantly inhibited by dipyridamole, an inhibitor of adenosine transporter, whereas inhibitors of adenosine kinase did not affect adenosine-induced changes. Various adenosine receptor agonists and AICAR, an activator of AMP-activated kinase, did not mimic the effect of adenosine. Thus, adenosine-induced apoptosis is likely due to intracellular action of AdoHcy and independent of AMP-activated kinase and adenosine receptors. Because elevated AdoHcy levels are associated with reduced mRNA methylation, we studied mRNA expression in Adox-treated cells by microarray analysis. Since several p53-target genes and other apoptosis-related genes were up-regulated by Adox, we conclude that AdoHcy is involved in adenosine-induced apoptosis by altering gene expression.  相似文献   

18.
Zhang X  Bruice TC 《Biochemistry》2007,46(34):9743-9751
There are three reaction steps in the S-adenosylmethionine (AdoMet) methylation of lysine-NH2 catalyzed by a methyltransferase. They are (i) combination of enzyme.Lys-NH3+ with AdoMet, (ii) substrate ionization to provide enzyme.AdoMet.Lys-NH2, and (iii) methyl transfer providing enzyme.AdoHcy.Lys-N(Me)H2+ and the dissociation of AdoHcy. In this study of the viral histone methyltransferase (vSET), we find that substrate ionization of vSET.Lys27-NH3+, vSET.Lys27-N(Me)H2+, and vSET.Lys27-N(Me)2H+ takes place upon combination with AdoMet. The presence of a water channel allows dissociation of a proton to the solvent. There is no water channel in the absence of AdoMet. That the formation of a water channel is combined with AdoMet binding was first discovered in our investigation of Rubisco large subunit methyltransferase. Via a quantum mechanics/molecular mechanics (QM/MM) approach, the calculated free energy barrier (DeltaG++) of the first methyl transfer reaction catalyzed by vSET [Lys27-NH2 + AdoMet --> Lys27-N(Me)H2+ + AdoHcy] equals 22.5 +/- 4.3 kcal/mol, which is in excellent agreement with the free energy barrier (21.7 kcal/mol) calculated from the experimental rate constant (0.047 min-1). The calculated DeltaG++ of the second methyl transfer reaction [AdoMet + Lys27-N(Me)H --> AdoHcy + Lys27-N(Me)2H+] at the QM/MM level is 22.6 +/- 3.6 kcal/mol, which is in agreement with the value of 22.4 kcal/mol determined from the experimental rate constant (0.015 min-1). The third methylation [Lys27-N(Me)2 + AdoMet --> Lys27-N(Me)3+ + AdoHcy] is associated with a DeltaG++ of 23.1 +/- 4.0 kcal/mol, which is in agreement with the value of 23.0 kcal/mol determined from the experimental rate constant (0.005 min-1). Our computations establish that the first, second, and third methyl transfer steps catalyzed by vSET are linear SN2 reactions with the bond making being approximately 50% associative.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号