首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of metabolome samples by gas chromatography/mass spectrometry requires a comprehensive derivatization method to afford quantitative and qualitative information of a complex biological sample. Here we describe an extremely time-effective microwave-assisted protocol for the commonly used methoxyamine and N-methyl-N-trimethylsilylfluoracetamide silylation method of primary metabolites. Our studies show that microwave irradiation can decrease the sample preparation time from approximately 120 min to 6 min without loss of either qualitative or quantitative information for the tested synthetic metabolite mixtures and microbial-derived metabolome samples collected from Bacillus subtilis and Staphylococcus aureus. Comparisons of metabolic fingerprints and selected metabolites show no noticeable differences compared with the commonly used heating block methods.  相似文献   

2.
Phenotype MicroArray (PM) permits the characterisation of bacteria under nearly 2000 culture conditions. The PM standard procedure for the chemical sensitivity analysis of Gram-positive bacteria failed in the analysis of Streptococcus thermophilus. Therefore, we developed an efficient and reproducible protocol to obtain a chemically sensitive profile of S. thermophilus using PM.  相似文献   

3.
Staphylococcus aureus alpha-toxin (Hla) is a potent pore-forming cytotoxin that plays an important role in the pathogenesis of S. aureus infections, including pneumonia. The impact of Hla on the dynamics of the metabolome in eukaryotic host cells has not been investigated comprehensively. Using 1H-NMR, GC-MS and HPLC-MS, we quantified the concentrations of 51 intracellular metabolites and assessed alterations in the amount of 25 extracellular metabolites in the two human bronchial epithelial cell lines S9 and 16HBE14o under standard culture conditions and after treatment with sub-lethal amounts (2 µg/ml) of recombinant Hla (rHla) in a time-dependent manner. Treatment of cells with rHla caused substantial decreases in the concentrations of intracellular metabolites from different metabolic pathways in both cell lines, including ATP and amino acids. Concomitant increases in the extracellular concentrations were detected for various intracellular compounds, including nucleotides, glutathione disulfide and NAD+. Our results indicate that rHla has a major impact on the metabolome of eukaryotic cells as a consequence of direct rHla-mediated alterations in plasma membrane permeability or indirect effects mediated by cellular signalling. However, cell-specific changes also were observed. Glucose consumption and lactate production rates suggest that the glycolytic activity of S9 cells, but not of 16HBE14o cells, is increased in response to rHla. This could contribute to the observed higher level of resistance of S9 cells against rHla-induced membrane damage.  相似文献   

4.
In this report, we introduce a liquid chromatography single-mass spectrometry method for metabolome quantification, using the LTQ Orbitrap high-resolution mass spectrometer. Analytes were separated with hydrophilic interaction liquid chromatography. At a working resolution of 30,000 (at m/z 400), the limit of detection varied from 50 fmol to 5 pmol for 25 metabolites tested. In terms of metabolite concentration, the linearity was about 2 to 3 orders of magnitude for most compounds (R2 > 0.99). To determine the accuracy of the system in complex sample matrices, the isotope dilution method was evaluated from mixtures of pure compounds and uniformly 13C-labeled cell extracts. With the application of this method, quantification was possible within single runs even when the pool sizes of individual metabolites varied from 0.13 to 55.6 μM. As a case study, intracellular concentrations of central metabolites were determined for Methylobacterium extorquens AM1 during growth on two different carbon sources, methanol and succinate. Reproducible results from technical and biological repetitions were obtained that revealed significant variations of intracellular metabolite pool sizes, depending on the carbon source. The LTQ Obitrap offers new perspectives and strategies for metabolome quantification.  相似文献   

5.
Flow cytometry is a powerful tool for analyzing the adhesion to and invasion of Staphylococcus aureus (S. aureus) to eukaryotic cells. Established techniques have used bacteria that have been genetically modified to express fluorescent proteins or directly labeled with fluorochromes prior to infection. Such approaches are appropriate in most cases; however, the use of genetically or chemically altered bacteria could introduce a bias when measuring fine differences in adhesion and invasiveness. Here, we describe a combined flow cytometry-based invasion and adhesion assay that does not require the processing of bacteria prior to internalization. This method was performed on osteoblastic MG-63 cells infected with S. aureus reference strain 8325-4 and its invasion-deficient isogenic mutant, which carries deletions in the genes encoding fibronectin-binding proteins A and B. The data from this assay were compared to those obtained using the standard gentamicin protection assay. The results obtained by the two methods were consistent. Moreover, quantification of internalized bacteria was more reproducible using the flow cytometry-based assay than the gentamicin protection assay, which allowed for the simultaneous quantification of host cell adhesion and invasion.  相似文献   

6.
In the late 1940s, epidemics of antibiotic-resistant strains of Staphylococcus aureus began to plague postpartum nurseries in hospitals across the United States. Exacerbated by overcrowding and nursing shortages, resistant S. aureus outbreaks posed a novel challenge to physicians and nurses heavily reliant on antibiotics as both prophylaxis and treatment. This paper explores the investigation of the reservoir, mode of transmission, and virulence of S. aureus during major hospital outbreaks and the subsequent implementation of novel infection control measures from the late 1940s through the early 1960s. The exploration of these measures reveals a shift in infection control policy as hospitals, faced with the failure of antibiotics to slow S. aureus outbreaks, implemented laboratory culture routines, modified nursery structure and layout, and altered nursing staff procedures to counter various forms of S. aureus transmission. Showcasing the need for widespread epidemiologic surveillance, ultimately manifesting itself in specialized “hospital epidemiology” training promoted in the 1970s, the challenges faced by hospital nurses in the 1950s prove highly relevant to the continued struggle with methicillin-resistant Staphylococcus aureus (MRSA) and other resistant nosocomial infections.  相似文献   

7.

Background

Staphylococcus epidermidis and S. aureus have been identified as the most common bacteria responsible for sub-clinical and overt breast implant infections and their ability to form biofilm on the implant as been reported as the essential factor in the development of this type of infections. Biofilm formation is a complex process with the participation of several distinct molecules, whose relative importance in different clinical settings has not yet been fully elucidated. To our knowledge this is the first study aimed at characterizing isolates causing breast peri-implant infections.

Results

Thirteen S. aureus and seven S. epidermidis causing breast peri-implant infections were studied.Using the broth microdilution method and the E-test, the majority of the strains were susceptible to all antibiotics tested. Methicillin resistance was detected in two S. epidermidis. All strains had different RAPD profiles and were able to produce biofilms in microtitre plate assays but, while all S. aureus carried and were able to express icaA and icaD genes, this was only true for one S. epidermidis. Biofilm development was glucose- and NaCl-induced (5 S. aureus and 1 S. epidermidis) or glucose-induced (the remaining strains). Proteinase K and sodium metaperiodate treatment had different effects on biofilms dispersion revealing that the strains studied were able to produce chemically different types of extracellular matrix mediating biofilm formation.All S. aureus strains harboured and expressed the atlA, clfA, FnA, eno and cna genes and the majority also carried and expressed the sasG (10/13), ebpS (10/13) genes.All S. epidermidis strains harboured and expressed the atlE, aae, embp genes, and the majority (six strains) also carried and expressed the fbe, aap genes.Genes for S. aureus capsular types 5 and 8 were almost equally distributed. The only leukotoxin genes detected were lukE/lukD (6/13).

Conclusions

S. aureus and S. epidermidis breast peri-implant infections are caused by heterogeneous strains with different biofilm development mechanisms.Since the collagen adhesin (cna) gene is not ubiquitously distributed among S. aureus, this protein could have an important role in the cause of breast peri-implant infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0368-x) contains supplementary material, which is available to authorized users.  相似文献   

8.
Staphylococcus aureus is a Gram-positive pathogen that causes opportunistic infections and a wide variety of diseases. Methicillin-resistant S. aureus (MRSA) is frequently isolated as multidrug-resistant in nosocomial and community infections. Molecular genetic manipulation is an important tool for understanding the molecular mechanism of S. aureus infection. However the number of available antibiotic markers is limited due to multidrug resistance. In this study, we constructed two Escherichia coli-S. aureus shuttle vectors, pKFT and pKFC, that carry a temperature-sensitive origin of replication in S. aureus, lacZ(a) enabling a simple blue-white screening in E. coli, an ampicillin resistant gene, and either a tetracycline resistance gene or a chloramphenicol resistance gene. We report a simple technique using pKFT to construct a markerless gene deletion mutant in S. aureus by allelic replacement without the use of a counter-selection marker. Subculture twice at 25 °C was critical to promote an allelic exchange rate in S. aureus. This technique is very simple and useful to facilitate genetic research on S. aureus.  相似文献   

9.
The development of fast, reliable and inexpensive phenol protocol is described for the isolation of RNA from bacterial biofilm producers. The method was tested on Staphylococcus aureus (S. aureus) and other biofilm-producing gram-negative microorganisms and provided the highest integrity of RNA recovery in comparison to other methods reported here. In parallel experiments, bacterial lysis with Qiagen, NucleoSpin RNAII, InnuREP RNA Mini, Trizol and MasterPure RNA extraction Kits using standard protocols consistently gave low RNA yields with an absence of integrity. The boiling method presented here yielded high concentration of RNA that was free from 16S and 23S rRNA, contained 5S RNA. Higher yields due to improved biofilm bacterial cell lysis were achieved with an added hot phenol incubation step without the need for a bead mill or the enzyme. This method when used in conjunction with the Qiagen RNeasy Mini kit, RNA isolation was a success with greater integrity and contained undegraded 16S and 23S rRNA and did not require further purification. Contaminating DNA was a problem with the RNA processing samples; we used quantitative real-time PCR (RT-qPCR) to measure the recovery of RNA from bacterial biofilm cells using the method described here.  相似文献   

10.
11.
Methicillin-resistant Staphylococcus remains a severe public health problem worldwide. This research was intended to identify the presence of methicillin-resistant coagulase-negative staphylococci clones and their staphylococcal cassette chromosome mec (SCCmec)-type isolate from patients with haematologic diseases presenting bacterial infections who were treated at the Blood Bank of the state of Amazonas in Brazil. Phenotypic and genotypic tests, such as SCCmec types and multilocus sequence typing (MLST), were developed to detect and characterise methicillin-resistant isolates. A total of 26 Gram-positive bacteria were isolated, such as: Staphylococcus epidermidis (8/27), Staphylococcus intermedius (4/27) and Staphylococcus aureus (4/27). Ten methicillin-resistant staphylococcal isolates were identified. MLST revealed three different sequence types: S. aureus ST243, S. epidermidis ST2 and a new clone of S. epidermidis, ST365. These findings reinforce the potential of dissemination presented by multi-resistant Staphylococcus and they suggest the introduction of monitoring actions to reduce the spread of pathogenic clonal lineages of S. aureus and S. epidermidis to avoid hospital infections and mortality risks.  相似文献   

12.
Mass spectrometry (MS) has been a major driver for metabolomics, and gas chromatography (GC)-MS has been one of the primary techniques used for microbial metabolomics. The use of liquid chromatography (LC)-MS has however been limited, but electrospray ionization (ESI) is very well suited for ionization of microbial metabolites without any previous derivatization needed. To address the capabilities of ESI-MS in detecting the metabolome of Saccharomyces cerevisiae, the in silico metabolome of this organism was used as a template to present a theoretical metabolome. This showed that in combination with the specificity of MS up to 84% of the metabolites can be identified in a high mass accuracy ESI-spectrum. A total of 66 metabolites were systematically analyzed by positive and negative ESI-MS/MS with the aim of initiating a spectral library for ESI of microbial metabolites. This systematic analysis gave insight into the ionization and fragmentation characteristics of the different metabolites. With this insight, a small study of metabolic footprinting with ESI-MS demonstrated that biological information can be extracted from footprinting spectra. Statistical analysis of the footprinting data revealed discriminating ions, which could be assigned using the in silico metabolome. By this approach metabolic footprinting can advance from a classification method that is used to derive biological information based on guilt-by-association, to a tool for extraction of metabolic differences, which can guide new targeted biological experiments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His6-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted l-Ala, l-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for l-Ala. S. aureus MurE was very specific for l-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and l-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (l-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and l-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis.  相似文献   

15.
Staphylococcus aureus and Pseudomonas aeruginosa are rapidly increasing as multidrug resistant strains worldwide. In nosocomial settings because of heavy exposure of different antimicrobials, resistance in these pathogens turned into a grave issue in both developed and developing countries. The aim of this study was to investigate in vitro antibiotic synergism of combinations of β-lactam–β-lactam and β-lactam–aminoglycoside against clinical isolates of S. aureus and P. aeruginosa. Synergy was determined by checkerboard double dilution method. The combination of amoxicillin and cefadroxil was found to be synergistic against 47 S. aureus isolates, in the FICI range of 0.14–0.50 (81.03%) followed by the combination of streptomycin and cefadroxil synergistic against 44 S. aureus isolates in the FICI range of 0.03–0.50 (75.86%). The combination of streptomycin and cefadroxil was observed to be synergistic against 39 P. aeruginosa isolates in the FICI range of 0.16–0.50 (81.28%). Further actions are needed to characterize the possible interaction mechanism between these antibiotics. Moreover, the combination of streptomycin and cefadroxil may lead to the development of a new and vital antimicrobial against simultaneous infections of S. aureus and P. aeruginosa.  相似文献   

16.
The marine sponge Amphimedon sp., collected from Hurghada (Egypt) was investigated for its sponge-derived actinomycetes diversity. Nineteen actinomycetes were cultivated and phylogenetically identified using 16S rDNA gene sequencing were carried out. The strains belong to genera Kocuria, Dietzia, Micrococcus, Microbacterium and Streptomyces. Many silent biosynthetic genes clusters were investigated using genome sequencing of actinomycete strains and has revealed in particular the genus Streptomyces that has indicated their exceptional capacity for the secondary metabolites production that not observed under classical cultivation conditions. In this study, the effect of N-acetylglucosamine on the metabolome of Streptomyces sp. RM66 was investigated using three actinomycetes media (ISP2, M1 and MA). In total, twelve extracts were produced using solid and liquid fermentation approaches. Liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) data were analysed using metabolomics tools to compare natural product production across all crude extracts. Our study highlighted the elicitation effect of N-acetylglucosamine on the secondary metabolite profiles of Streptomyces sp. RM66. These results highlight the of N-acetylglucosamine application as an elicitor to induce the cryptic metabolites and for increasing the chemical diversity. All the twelve extracts were tested for their antibacterial activity was tested against Staphylococcus aureus NCTC 8325, antifungal activity against Candida albicans 5314 (ATCC 90028) and anti-trypanosomal activity against Trypanosoma brucei brucei. Extract St1 showed the most potent one with activities 2.3, 3.2 and 4.7 ug/ml as antibacterial, antifungal and anti-trypanosomal, respectively.  相似文献   

17.
We describe the development and application of a Pooled Suppression Subtractive Hybridization (PSSH) method to describe differences between the genomic content of a pool of clinical Staphylococcus aureus isolates and a sequenced reference strain. In comparative bacterial genomics, Suppression Subtractive Hybridization (SSH) is normally utilized to compare genomic features or expression profiles of one strain versus another, which limits its ability to analyze communities of isolates. However, a PSSH approach theoretically enables the user to characterize the entirety of gene content unique to a related group of isolates in a single reaction. These unique fragments may then be linked to individual isolates through standard PCR. This method was applied to examine the genomic diversity found in pools of S.aureus isolates associated with complicated bacteremia infections leading to endocarditis and osteomyelitis. Across four pools of 10 isolates each, four hundred and twenty seven fragments not found in or significantly divergent from the S. aureus NCTC 8325 reference genome were detected. These fragments could be linked to individual strains within its pool by PCR. This is the first use of PSSH to examine the S. aureus pangenome. We propose that PSSH is a powerful tool for researchers interested in rapidly comparing the genomic content of multiple unstudied isolates.  相似文献   

18.

Introduction

Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as a key hydride transfer coenzyme for several oxidoreductases. It is also the substrate for intracellular secondary messenger signalling by CD38 glycohydrolases, DNA repair by poly(adenosine diphosphate ribose) polymerase, and epigenetic regulation of gene expression by a class of histone deacetylase enzymes known as sirtuins. The measurement of NAD+ and its related metabolites (hereafter, the NAD+ metabolome) represents an important indicator of cellular function.

Objectives

A study was performed to develop a sensitive, selective, robust, reproducible, and rapid method for the concurrent quantitative determination of intracellular levels of the NAD+ metabolome in glial and oocyte cell extracts using liquid chromatography coupled to mass spectrometry (LC/MS/MS).

Methods

The metabolites were separated on a versatile amino column using a dual HILIC-RP gradient with heated electrospray (HESI) tandem mass spectrometry detection in mixed polarity multiple reaction monitoring mode.

Results

Quantification of 17 metabolites in the NAD+ metabolome in U251 human astroglioma cells could be achieved. Changes in NAD+ metabolism in U251 cell line, and murine oocytes under different culture conditions were also investigated.

Conclusion

This method can be used as a sensitive profiling tool, tailoring chromatography for metabolites that express significant pathophysiological changes in several disease conditions and is indispensable for targeted analysis.
  相似文献   

19.
Potato (Solanum tuberosum L.) cv. Santé was grown over 2 years under both conventional and organic fertiliser and crop protection regimes. The tuber metabolome was analysed using mass-spectrometry (MS) based approaches, principally liquid chromatography (LC)–MS and gas chromatography (GC)–MS. Data were analysed using Principal Components Analysis (PCA) and Analysis of Variance (ANOVA) to assess any differences between production practices. GC–MS analysis of non-polar metabolites did not detect any statistically significant differences, but GC–MS analysis of polar compounds identified 83 metabolites showing significant differences in the metabolome between the fertiliser treatments. Of the 62 metabolites that were less abundant in tuber samples from organic compared with conventionally fertilised crops, consistent year on year differences were dominated by free amino acids. The effect on free amino acids is associated with the lower nitrogen (N) content of the organically grown potatoes in this instance (50 % lower than for conventional production). LC–MS provided indications that levels of certain glycoalkaloids may be lower under the organic fertiliser regime in one growing season. Differences associated with the crop protection measures used were much less consistent, and relatively small, compared with the fertiliser effects found.  相似文献   

20.
The development and progression of gastric cancer (GC) is greatly influenced by gastric microbiota and their metabolites. Here, we characterized the gastric microbiome and metabolome profiles of 37 GC tumor tissues and matched non-tumor tissues using 16s rRNA gene sequencing and ultrahigh performance liquid chromatography tandem mass spectrometry, respectively. Microbial diversity and richness were higher in GC tumor tissues than in non-tumor tissues. The abundance of Helicobacter was increased in non-tumor tissues, while the abundance of Lactobacillus, Streptococcus, Bacteroides, Prevotella, and 6 additional genera was increased in the tumor tissues. The untargeted metabolome analysis revealed 150 discriminative metabolites, among which the relative abundance of the amino acids, carbohydrates and carbohydrate conjugates, glycerophospholipids, and nucleosides was higher in tumor tissues compared to non-tumor tissues. The targeted metabolome analysis further demonstrated that the combination of 1-methylnicotinamide and N-acetyl-D-glucosamine-6-phosphate could serve as a robust biomarker for distinction between GC tumors and non-tumor tissues. Correlation analysis revealed that Helicobacter and Lactobacillus were negatively and positively correlated with the majority of differential metabolites in the classes of amino acids, carbohydrates, nucleosides, nucleotides, and glycerophospholipids, respectively, suggesting that Helicobacter and Lactobacillus might play a role in degradation and synthesis of the majority of differential metabolites in these classes, respectively. Acinetobacter, Comamonas, Faecalibacterium, Sphingomonas, and Streptococcus were also significantly correlated with many differential amino acids, carbohydrates, nucleosides, nucleotides, and glycerophospholipids. In conclusion, the differences in metabolome profiles between GC tumor and matched non-tumor tissues may be partly due to the collective activities of Helicobacter, Lactobacillus, and other bacteria, which eventually affects GC carcinogenesis and progression.Subject terms: Cancer metabolism, Gastrointestinal cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号