共查询到20条相似文献,搜索用时 0 毫秒
1.
The low abundance and highly hydrophobic nature of most membrane proteins make their analysis more difficult than that for common soluble proteins. Successful membrane protein identification is largely dependent on the sample preparation including the enrichment and dissolution of the membrane proteins. A series of conventional and newly developed methods has been applied to the enrichment of low-abundance membrane proteins at membrane and/or protein levels and to the dissolution of hydrophobic membrane proteins. However, all the existing methods have inherent advantages and limitations. Up to now, there has been no unique method that can universally be employed to solve all the problems and more efforts are needed in improving sample preparation for the analysis of membrane proteomes. 相似文献
2.
Keith Ashman Tony Houthaeve Jonathan Clayton Matthias Wilm Alexandre Podtelejnikov Ole N. Jensen Matthias Mann 《Letters in Peptide Science》1997,4(2):57-65
The rapid accumulation of sequence data generated by the various genome sequencingprojects and the generation of expressed sequence tag databases has resulted in the need forthe development of fast and sensitive methods for the identification and characterisation oflarge numbers of gel electrophoretically separated proteins to translate the sequence data intobiological function. To achieve this goal it has been necessary to devise new approaches toprotein analysis: matrix-assisted laser desorption and electrospray mass spectrometry havebecome important protein analytical tools which are both fast and sensitive. When combinedwith a robotic system for the in-gel digestion of electrophoretically separated proteins, itbecomes possible to rapidly identify many proteins by searching databases with MS data. Thepower of this combination of techniques is demonstrated by an analysis of the proteins presentin the myofibrillar lattice of the indirect flight muscle of Drosophila melanogaster. Theproteins were separated by SDS-PAGE and in-gel proteolysis was performed bothautomatically and manually. All 16 major proteins could quickly be identified by massspectrometry. Although most of the protein components were known to be present in theflight muscle, two new components were also identified. The combination of methodsdescribed offers a means for the rapid identification of large numbers of gel separatedproteins. 相似文献
3.
Klein C Garcia-Rizo C Bisle B Scheffer B Zischka H Pfeiffer F Siedler F Oesterhelt D 《Proteomics》2005,5(1):180-197
The identification of 114 integral membrane proteins from Halobacterium salinarum was achieved using liquid chromatography/tandem mass spectrometric (LC/MS/MS) techniques, representing 20% of the predicted alpha-helical transmembrane proteins of the genome. For this experiment, a membrane preparation with only minor contamination by soluble proteins was prepared. From this membrane preparation a number of peripheral membrane proteins were identified by the classical two dimensional gel electrophoresis (2-DE) approach, but identification of integral membrane proteins largely failed with only a very few being identified. By use of a fluorescently labeled membrane preparation, we document that this is caused by an irreversible precipitation of the membrane proteins upon isoelectric focusing (IEF). Attempts to overcome this problem by using alternative IEF methods and IEF strip solubilisation techniques were not successful, and we conclude that the classical 2-DE approach is not suited for the identification of integral membrane proteins. Computational analysis showed that the identification of integral membrane proteins is further complicated by the generation of tryptic peptides, which are unfavorable for matrix assisted laser desorption/ionization time of flight mass spectrometric peptide mass fingerprint analysis. Together with the result from the analysis of the cytosolic proteome (see preceding paper), we could identify 34% (943) of all gene products in H. salinarum which can be theoretically expressed. This is a cautious estimate as very stringent criteria were applied for identification. These results are available under www.halolex.mpg.de. 相似文献
4.
Human saliva contains a large number of proteins and peptides (salivary proteome) that help maintain homeostasis in the oral cavity. Global analysis of human salivary proteome is important for understanding oral health and disease pathogenesis. In this study, large-scale identification of salivary proteins was demonstrated by using shotgun proteomics and two-dimensinal gel electrophoresis-mass spectrometry (2-DE-MS). For the shotgun approach, whole saliva proteins were prefractionated according to molecular weight. The smallest fraction, presumably containing salivary peptides, was directly separated by capillary liquid chromatography (LC). However, the large protein fractions were digested into peptides for subsequent LC separation. Separated peptides were analyzed by on-line electrospray tandem mass spectrometry (MS/MS) using a quadrupole-time of flight mass spectrometer, and the obtained spectra were automatically processed to search human protein sequence database for protein identification. Additionally, 2-DE was used to map out the proteins in whole saliva. Protein spots 105 in number were excised and in-gel digested; and the resulting peptide fragments were measured by matrix-assisted laser desorption/ionization-mass spectrometry and sequenced by LC-MS/MS for protein identification. In total, we cataloged 309 proteins from human whole saliva by using these two proteomic approaches. 相似文献
5.
Helen L. Phillips James C. Williamson Karin A. van Elburg Ambrosius P. L. Snijders Phillip C. Wright Mark J. Dickman 《Proteomics》2010,10(16):2950-2960
The 2‐D peptide separations employing mixed mode reversed phase anion exchange (MM (RP‐AX)) HPLC in the first dimension in conjunction with RP chromatography in the second dimension were developed and utilised for shotgun proteome analysis. Compared with strong cation exchange (SCX) typically employed for shotgun proteomic analysis, peptide separations using MM (RP‐AX) revealed improved separation efficiency and increased peptide distribution across the elution gradient. In addition, improved sample handling, with no significant reduction in the orthogonality of the peptide separations was observed. The shotgun proteomic analysis of a mammalian nuclear cell lysate revealed additional proteome coverage (2818 versus 1125 unique peptides and 602 versus 238 proteins) using the MM (RP‐AX) compared with the traditional SCX hyphenated to RP‐LC‐MS/MS. The MM analysis resulted in approximately 90% of the unique peptides identified present in only one fraction, with a heterogeneous peptide distribution across all fractions. No clustering of the predominant peptide charge states was observed during the gradient elution. The application of MM (RP‐AX) for 2‐D LC proteomic studies was also extended in the analysis of iTRAQ‐labelled HeLa and cyanobacterial proteomes using nano‐flow chromatography interfaced to the MS/MS. We demonstrate MM (RP‐AX) HPLC as an alternative approach for shotgun proteomic studies that offers significant advantages over traditional SCX peptide separations. 相似文献
6.
Elsobky S Crane AM Margolis M Carreon TA Bhattacharya SK 《World journal of biological chemistry》2014,5(2):106-114
Proteins have important functional roles in the body, which can be altered in disease states. The eye is a complex organ rich in proteins; in particular, the anterior eye is very sophisticated in function and is most commonly involved in ophthalmic diseases. Proteomics, the large scale study of proteins, has greatly impacted our knowledge and understanding of gene function in the post-genomic period. The most significant breakthrough in proteomics has been mass spectrometric identification of proteins, which extends analysis far beyond the mere display of proteins that classical techniques provide. Mass spectrometry functions as a "mass analyzer" which simplifies the identification and quantification of proteins extracted from biological tissue. Mass spectrometric analysis of the anterior eye proteome provides a differential display for protein comparison of normal and diseased tissue. In this article wepresent the key proteomic findings in the recent literature related to the cornea, aqueous humor, trabecular meshwork, iris, ciliary body and lens. Through this we identified unique proteins specific to diseases related to the anterior eye. 相似文献
7.
Gesslbauer B Poljak A Handwerker C Schüler W Schwendenwein D Weber C Lundberg U Meinke A Kungl AJ 《Proteomics》2012,12(6):845-858
The versatility of the surface of Borrelia, the causative agent of Lyme borreliosis, is very important in host-pathogen interactions allowing bacteria to survive in ticks and to persist in a mammalian environment. To identify the surface proteome of Borrelia, we have performed a large comparative proteomic analysis on the three most important pathogenic Borrelia species, namely B. burgdorferi (strain B31), B. afzelii (strain K78), and B. garinii (strain PBi). Isolation of membrane proteins was performed by using three different approaches: (i) a detergent-based fractionation of outer membrane proteins; (ii) a trypsin-based partial shedding of outer cell surface proteins; (iii) biotinylation of membrane proteins and preparation of the biotin-labelled fraction using streptavidin. Proteins derived from the detergent-based fractionation were further sub-fractionated by heparin affinity chromatography since heparin-like molecules play an important role for microbial entry into human cells. All isolated proteins were analysed using either a gel-based liquid chromatography (LC)-MS/MS technique or by two-dimensional (2D)-LC-MS/MS resulting in the identification of 286 unique proteins. Ninety seven of these were found in all three Borrelia species, representing potential targets for a broad coverage vaccine for the prevention of Lyme borreliosis caused by the different Borrelia species. 相似文献
8.
Jana Aradska Tanja Bulat Fernando J. Sialana Ruth Birner‐Gruenberger Buchner Erich Gert Lubec 《Proteomics》2015,15(19):3356-3360
Membrane proteins play key roles in several fundamental biological processes such as cell signalling, energy metabolism and transport. Despite the significance, these still remain an under‐represented group in proteomics datasets. Herein, a bottom‐up approach to analyse an enriched membrane fraction from Drosophila melanogaster heads using multidimensional liquid chromatography (LC) coupled with tandem‐mass spectrometry (MS/MS) that relies on complete solubilisation and digestion of proteins, is reported. An enriched membrane fraction was prepared using equilibrium density centrifugation on a discontinuous sucrose gradient, followed by solubilisation using the filter‐aided sample preparation (FASP), tryptic and sequential chymotryptic digestion of proteins. Peptides were separated by reversed‐phase (RP) LC at high pH in the first dimension and acidic RP‐LC in the second dimension coupled directly to an Orbitrap Velos Pro mass spectrometer. A total number of 4812 proteins from 114 865 redundant and 38 179 distinct peptides corresponding to 4559 genes were identified in the enriched membrane fraction from fly heads. These included brain receptors, transporters and channels that are most important elements as drug targets or are linked to disease. Data are available via ProteomeXchange with identifier PXD001712 ( http://proteomecentral.proteomexchange.org/dataset/PXD001712 ). 相似文献
9.
Liska AJ Popov AV Sunyaev S Coughlin P Habermann B Shevchenko A Bork P Karsenti E Shevchenko A 《Proteomics》2004,4(9):2707-2721
The application of functional proteomics to important model organisms with unsequenced genomes is restricted because of the limited ability to identify proteins by conventional mass spectrometry (MS) methods. Here we applied MS and sequence-similarity database searching strategies to characterize the Xenopus laevis microtubule-associated proteome. We identified over 40 unique, and many novel, microtubule-bound proteins, as well as two macromolecular protein complexes involved in protein translation. This finding was corroborated by electron microscopy showing the presence of ribosomes on spindles assembled from frog egg extracts. Taken together, these results suggest that protein translation occurs on the spindle during meiosis in the Xenopus oocyte. These findings were made possible due to the application of sequence-similarity methods, which extended mass spectrometric protein identification capabilities by 2-fold compared to conventional methods. 相似文献
10.
11.
As the number of fully sequenced animal genomes and the performance of advanced mass spectrometry-based proteomics techniques are continuously improving, there is now a great opportunity to increase the knowledge of various animal proteomes. This research area is further stimulated by a growing interest from veterinary medicine and the pharmaceutical industry. Cerebrospinal fluid (CSF) is a good source for better understanding of diseases related to the central nervous system, both in humans and other animals.In this study, four high-abundant protein depletion columns, developed for human or rat serum, were evaluated for dog CSF. For the analysis, a shotgun proteomics approach, based on nanoLC-LTQ Orbitrap MS/MS, was applied. All the selected approaches were shown to deplete dog CSF with different success. It was demonstrated that the columns significantly improved the coverage of the detected dog CSF proteome. An antibody-based column showed the best performance, in terms of efficiency, repeatability and the number of proteins detected in the sample. In total 983 proteins were detected. Of those, 801 proteins were stated as uncharacterized in the UniProt database. To the best of our knowledge, this is the so far largest number of proteins reported for dog CSF in one single study. 相似文献
12.
Due to the enormous complexity of proteomes which constitute the entirety of protein species expressed by a certain cell or tissue, proteome-wide studies performed in discovery mode are still limited in their ability to reproducibly identify and quantify all proteins present in complex biological samples. Therefore, the targeted analysis of informative subsets of the proteome has been beneficial to generate reproducible data sets across multiple samples. Here we review the repertoire of antibody- and mass spectrometry (MS) -based analytical tools which is currently available for the directed analysis of predefined sets of proteins. The topics of emphasis for this review are Selected Reaction Monitoring (SRM) mass spectrometry, emerging tools to control error rates in targeted proteomic experiments, and some representative examples of applications. The ability to cost- and time-efficiently generate specific and quantitative assays for large numbers of proteins and posttranslational modifications has the potential to greatly expand the range of targeted proteomic coverage in biological studies. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry. 相似文献
13.
Chaowei Shi Fang Han Ying Xiong Changlin Tian 《Protein expression and purification》2009,68(2):221-225
In membrane protein biochemical and structural studies, detergents are used to mimic membrane environment and maintain functional, stable conformation of membrane proteins in the absence of lipid bilayers. However, detergent concentration, esp. molar ratio of membrane protein to detergent is usually unknown. Here, a gas chromatography–mass spectrometry selected ion monitoring (GC–MS-SIM) method was developed to quantify four detergents which are frequently used in membrane protein structural studies. To remove excessive detergents, a filtered centrifugation using Centricon tubes was applied. A membrane protein Ig-Beta fragment in four different detergent micelles was exemplified. Detergent concentrations in the upper and lower fraction of the Centricon tube were measured after each round of centrifugation. The results were very consistent to basic properties of detergent micelles in aqueous solvents. Therefore, coupling of GC–MS-SIM and detergent removal by Centricon tubes, detergents concentration, esp. molar ratio of membrane protein to detergent could be controlled, which will expedite membrane protein structural and biochemical studies. 相似文献
14.
15.
Alessandro Tanca Grazia Biosa Daniela Pagnozzi Maria Filippa Addis Sergio Uzzau 《Proteomics》2013,13(17):2597-2607
This work presents a comparative evaluation of several detergent‐based sample preparation workflows for the MS‐based analysis of bacterial proteomes, performed using the model organism Escherichia coli. Initially, RapiGest‐ and SDS‐based buffers were compared for their protein extraction efficiency and quality of the MS data generated. As a result, SDS performed best in terms of total protein yields and overall number of MS identifications, mainly due to a higher efficiency in extracting high molecular weight (MW) and membrane proteins, while RapiGest led to an enrichment in periplasmic and fimbrial proteins. Then, SDS extracts underwent five different MS sample preparation workflows, including: detergent removal by spin columns followed by in‐solution digestion (SC), protein precipitation followed by in‐solution digestion in ammonium bicarbonate or urea buffer, filter‐aided sample preparation (FASP), and 1DE separation followed by in‐gel digestion. On the whole, about 1000 proteins were identified upon LC‐MS/MS analysis of all preparations (>1100 with the SC workflow), with FASP producing more identified peptides and a higher mean sequence coverage. Each protocol exhibited specific behaviors in terms of MW, hydrophobicity, and subcellular localization distribution of the identified proteins; a comparative assessment of the different outputs is presented. 相似文献
16.
17.
Carol J Gorseling MC de Jong CF Lingeman H Kientz CE van Baar BL Irth H 《Analytical biochemistry》2005,346(1):150-157
A multidimensional analytical method for the rapid determination and identification of proteins has been developed. The method is based on the size-exclusion fractionation of protein-containing samples, subsequent on-line trypsin digestion and desalination, and reversed-phase high-performance liquid chromatography-electrospray mass spectrometry detection. The present system reduces digestion times to 20 min and the total analysis time to less than 100 min. Using bovine serum albumin and myoglobin as model proteins, optimization of key parameters such as digestion times and interfacing conditions between the different pretreatment steps was performed. The automated system was tested for the identification of infectious disease agents such as cholera toxin and staphylococcal enterotoxin B. This resulted typically in a positive identification by a total sequence coverage of approximately 40%. 相似文献
18.
Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification 总被引:6,自引:0,他引:6
Acrylamide concentration, urea content, and the trailing ion used for sodium dodecyl sulfate (SDS)-gels modify electrophoretic protein mobilities in a protein-dependent way. Varying these parameters we coupled two SDS-gels to a two-dimensional (2-D) electrophoresis system. Protein spots in 2-D gels are dispersed around a diagonal. Hydrophobic proteins are well separated from water-soluble proteins which is the essential advantage of the novel technique. Mass spectrometric identification of previously unaccessible hydrophobic proteins is now possible. 相似文献
19.
García A Prabhakar S Brock CJ Pearce AC Dwek RA Watson SP Hebestreit HF Zitzmann N 《Proteomics》2004,4(3):656-668
Platelets play a key role in the control of bleeding and wound healing, contributing to the formation of vascular plugs. Under pathologic circumstances, they are involved in thrombotic disorders, including heart disease. Since platelets do not have a nucleus, proteomics offers a powerful alternative approach to provide data on protein expression in these cells, helping to address their biology. In this publication we extend the previously reported analysis of the pI 4-5 region of the human platelet proteome to the pI 5-11 region. By using narrow pI range two-dimensional electrophoresis (2-DE) for protein separation followed by high-throughput tandem mass spectrometry (MS/MS) for protein identification, we were able to identify 760 protein features, corresponding to 311 different genes, resulting in the annotation of 54% of the pI 5-11 range 2-DE proteome map. We evaluated the physicochemical properties and functions of the identified platelet proteome. Importantly, the main group of proteins identified is involved in intracellular signalling and regulation of the cytoskeleton. In addition, 11 hypothetical proteins are reported. In conclusion, this study provides a unique inventory of the platelet proteome, contributing to our understanding of platelet function and building the basis for the identification of new drug targets. 相似文献
20.
Radiation-induced lesion outcomes of normal tissues are difficult to predict. In particular, radiotherapy or local exposure to a radioactive source by accident can trigger strong injury to the skin. The finding of biomarkers is of fundamental relevance for the prediction of lesion apparition and its evolution, and for the settlement of therapeutic strategies. In order to study radiation-induced cutaneous lesions, we developed a mouse model in which the dorsal skin was selectively exposed to ionizing radiation (IR). 2-D difference gel electrophoresis (2-D DIGE) coupled with MS was used to investigate proteins altered in expression and/or PTM in serum. Proteome changes were monitored from 1 day to 1 month postirradiation, at a dose of 40 Gy, in this specific model developing reproducible clinical symptoms ranging from erythema to skin ulceration with wound healing. About 60 proteins (including some isoforms and likely post-translational variants), representing 20 different proteins, that exhibited significant and reproducible kinetic expression changes, were identified using MS and database searches. Several proteins, down- or up-regulated from day one, could prove to be good candidates to prognosticate the evolution of a skin lesion such as necrosis. In addition, we observed shifts in pI of several spot trains, revealing potential PTM changes, which could also serve as indicators of irradiation or as predictors of lesion severity. 相似文献