首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The Notch pathway is involved in cell-cell signaling during development and adulthood from invertebrates to higher eukaryotes. Activation of the Notch receptor by its ligands relies upon a multi-step processing. The extracellular part of the receptor is removed by a metalloprotease of the ADAM family and the remaining fragment is cleaved within its transmembrane domain by a presenilin-dependent γ-secretase activity. γ-Secretase processing of Notch has been shown to depend upon monoubiquitination as well as clathrin-mediated endocytosis (CME). We show here that AAK1, the adaptor-associated kinase 1, directly interacts with the membrane-tethered active form of Notch released by metalloprotease cleavage. Active AAK1 acts upstream of the γ-secretase cleavage by stabilizing both the membrane-tethered activated form of Notch and its monoubiquitinated counterpart. We propose that AAK1 acts as an adaptor for Notch interaction with components of the clathrin-mediated pathway such as Eps15b. Moreover, transfected AAK1 increases the localization of activated Notch to Rab5-positive endocytic vesicles, while AAK1 depletion or overexpression of Numb, an inhibitor of the pathway, interferes with this localization. These results suggest that after ligand-induced activation of Notch, the membrane-tethered form can be directed to different endocytic pathways leading to distinct fates.  相似文献   

2.
The intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein (APP) is dependent on biologically active presenilins (PS). Notch also undergoes a similar PS-dependent gamma-secretase-like cleavage, resulting in the liberation of the Notch intracellular domain (NICD), which is critically required for developmental signal transduction. gamma-Secretase processing of APP results in the production of a similar fragment called AICD (APP intracellular domain), which may function in nuclear signaling as well. AICD, like NICD, is rapidly removed. By using a battery of protease inhibitors we demonstrate that AICD, in contrast to NICD, is degraded by a cytoplasmic metalloprotease. In vitro degradation of AICD can be reconstituted with cytoplasmic fractions obtained from neuronal and non-neuronal cells. Taking into account the inhibition profile and the cytoplasmic localization, we identified three candidate enzymes (neurolysin, thimet oligopeptidase, and insulin-degrading enzyme (IDE), also known as insulysin), which all are involved in the degradation of bioactive peptides in the brain. When insulin, a well characterized substrate of IDE, was added to the in vitro degradation assay, removal of AICD was efficiently blocked. Moreover, overexpression of IDE resulted in enhanced degradation of AICD, whereas overexpression of the inactive IDE E111Q mutant did not affect AICD degradation. Finally, immunodepletion of IDE significantly reduced the AICD degrading activity. Therefore our data demonstrate that IDE, which is one of the proteases implicated in the removal of extracellular Abeta, also removes the cytoplasmic product of gamma-secretase cleaved APP.  相似文献   

3.

Background

Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia.

Principal Findings

The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity.

Conclusions/Significance

S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with models for receptor activation in which ligand-binding or T-ALL-associated mutations lead to conformational changes of the NRR that permit metalloprotease cleavage.  相似文献   

4.
5.
Presenilin-1 (PS1), a polytopic membrane protein primarily localized to the endoplasmic reticulum, is required for efficient proteolysis of both Notch and beta-amyloid precursor protein (APP) within their trans- membrane domains. The activity that cleaves APP (called gamma-secretase) has properties of an aspartyl protease, and mutation of either of the two aspartate residues located in adjacent transmembrane domains of PS1 inhibits gamma-secretase processing of APP. We show here that these aspartates are required for Notch processing, since mutation of these residues prevents PS1 from inducing the gamma-secretase-like proteolysis of a Notch1 derivative. Thus PS1 might function in Notch cleavage as an aspartyl protease or di-aspartyl protease cofactor. However, the ER localization of PS1 is inconsistent with that hypothesis, since Notch cleavage occurs near the cell surface. Using pulse-chase and biotinylation assays, we provide evidence that PS1 binds Notch in the ER/Golgi and is then co-transported to the plasma membrane as a complex. PS1 aspartate mutants were indistinguishable from wild-type PS1 in their ability to bind Notch or traffic with it to the cell surface, and did not alter the secretion of Notch. Thus, PS1 appears to function specifically in Notch proteolysis near the plasma membrane as an aspartyl protease or cofactor.  相似文献   

6.
7.
The low density lipoprotein (LDL) receptor-related protein (LRP) is a multifunctional cell surface receptor that interacts through its cytoplasmic tail with adaptor and scaffold proteins that participate in cellular signaling. Its extracellular domain, like that of the signaling receptor Notch and of amyloid precursor protein (APP), is proteolytically processed at multiple positions. This similarity led us to investigate whether LRP, like APP and Notch, might also be cleaved at a third, intramembranous or cytoplasmic site, resulting in the release of its intracellular domain. Using independent experimental approaches we demonstrate that the cytoplasmic domain is released by a gamma-secretase-like activity and that this event is modulated by protein kinase C. Furthermore, cytoplasmic adaptor proteins that bind to the LRP tail affect the subcellular localization of the free intracellular domain and may regulate putative signaling functions. Finally, we show that the degradation of the free tail fragment is mediated by the proteasome. These findings suggest a novel role for the intracellular domain of LRP that may involve the subcellular translocation of preassembled signaling complexes from the plasma membrane.  相似文献   

8.
The NOTCH1 receptor is cleaved within its extracellular domain by furin during its maturation, yielding two subunits that are held together noncovalently by a juxtamembrane heterodimerization (HD) domain. Normal NOTCH1 signaling is initiated by the binding of ligand to the extracellular subunit, which renders the transmembrane subunit susceptible to two successive cleavages within and C terminal to the heterodimerization domain, catalyzed by metalloproteases and gamma-secretase, respectively. Because mutations in the heterodimerization domain of NOTCH1 occur frequently in human T-cell acute lymphoblastic leukemia (T-ALL), we assessed the effect of 16 putative tumor-associated mutations on Notch1 signaling and HD domain stability. We show here that 15 of the 16 mutations activate canonical NOTCH1 signaling. Increases in signaling occur in a ligand-independent fashion, require gamma-secretase activity, and correlate with an increased susceptibility to cleavage by metalloproteases. The activating mutations cause soluble NOTCH1 heterodimers to dissociate more readily, either under native conditions (n = 3) or in the presence of urea (n = 11). One mutation, an insertion of 14 residues immediately N terminal to the metalloprotease cleavage site, increases metalloprotease sensitivity more than all others, despite a negligible effect on heterodimer stability by comparison, suggesting that the insertion may expose the S2 site by repositioning it relative to protective NOTCH1 ectodomain residues. Together, these studies show that leukemia-associated HD domain mutations render NOTCH1 sensitive to ligand-independent proteolytic activation through two distinct mechanisms.  相似文献   

9.
The cleavage of proteins within their transmembrane domain by Presenilin (PS) has an important role in different signalling pathways and in Alzheimer's disease. Nevertheless, not much is known about the regulation of PS activity. It has been suggested that substrate recognition by the PS complex depends only on the size of the extracellular domain independent of the amino-acid sequence and that PS activity is constitutive in all cells that express the minimal components of the complex. We report here the development of an in vivo reporter system that allowed us to analyse the processing of human amyloid precursor protein (APP) and the Notch receptor tissue specifically during Drosophila development in the living organism. Using this system, we demonstrate differences between APP and Notch processing and show that PS-mediated cleavage of APP can be regulated in different cell types independent of the size of the extracellular domain.  相似文献   

10.
11.
Unlike most receptors, Notch serves as both the receiver and direct transducer of signaling events. Activation can be mediated by one of five membrane-bound ligands of either the Delta-like (-1, -2, -4) or Jagged/Serrate (-1, -2) families. Alternatively, dissociation of the Notch heterodimer with consequent activation can also be mediated experimentally by calcium chelators or by mutations that destabilize the Notch1 heterodimer, such as in the human disease T cell acute lymphoblastic leukemia. Here we show that MAGP-2, a protein present on microfibrils, can also interact with the EGF-like repeats of Notch1. Co-expression of MAGP-2 with Notch1 leads to both cell surface release of the Notch1 extracellular domain and subsequent activation of Notch signaling. Moreover, we demonstrate that the C-terminal domain of MAGP-2 is required for binding and activation of Notch1. Based on the high level of homology, we predicted and further showed that MAGP-1 can also bind to Notch1, cause the release of the extracellular domain, and activate signaling. Notch1 extracellular domain release induced by MAGP-2 is dependent on formation of the Notch1 heterodimer by a furin-like cleavage, but does not require the subsequent ADAM metalloprotease cleavage necessary for production of the Notch signaling fragment. Together these results demonstrate for the first time that the microfibrillar proteins MAGP-1 and MAGP-2 can function outside of their role in elastic fibers to activate a cellular signaling pathway.  相似文献   

12.
13.
14.
Notch signaling regulates cell fate decisions during development through local cell interactions. Signaling is triggered by the interaction of the Notch receptor with its transmembrane ligands expressed on adjacent cells. Recent studies suggest that Delta is cleaved to release an extracellular fragment, DlEC, by a mechanism that involves the activity of the metalloprotease Kuzbanian; however, the functional significance of that cleavage remains controversial. Using independent functional assays in vitro and in vivo, we examined the biological activity of purified soluble Delta forms and conclude that Delta cleavage is an important down-regulating event in Notch signaling. The data support a model whereby Delta inactivation is essential for providing the critical ligand/receptor expression differential between neighboring cells in order to distinguish the signaling versus the receiving partner.  相似文献   

15.
Nectin-1 is a member of the immunoglobulin superfamily and a Ca(2+)-independent adherens junction protein involved in synapse formation. Here we show that nectin-1alpha undergoes intramembrane proteolytic processing analogous to that of the Alzheimer's disease amyloid precursor protein, mediated by a presenilin (PS)-dependent gamma-secretase-like activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment of Chinese hamster ovary cells activated a first proteolytic event, resulting in ectodomain shedding of nectin-1alpha. Subsequent cleavage of the remaining 26-kDa membrane-anchored C-terminal fragment (CTF) was inhibited independently by three specific gamma-secretase inhibitors and by expression of the dominant negative form of PS1. The PS/gamma-secretase-like cleavage product was detected in vivo following proteasome inhibitor treatment of cells. An in vitro gamma-secretase assay confirmed the generation of a 24-kDa nectin-1alpha intracellular domain, peripherally associated with the membrane fraction. We also found nectin-1alpha to interact with the N-terminal fragment of PS1. Finally, gamma-secretase inhibition resulted in beta-catenin release from cell junctions, concomitantly with the accumulation of the 26-kDa nectin-1alpha CTF, suggesting that high levels of nectin-1alpha CTF interfere with TPA-induced remodeling of cell-cell junctions. Our results are consistent with a previously reported role for PS/gamma-secretase in adherens junction function involving cleavage of cadherins. Similar to nectin-1, other members of the immunoglobulin superfamily involved in synapse formation may also serve as substrates for PS/gamma-secretase-like intramembrane proteolytic activity.  相似文献   

16.
The kuzbanian gene encodes a metalloprotease of the ADAM family that is involved in Notch signalling. However, its precise role is a matter of controversy. While original reports concluded that kuz is required on the receiving side of the Notch signalling pathway, a more recent report suggests that Kuz is required on the signal-emitting side for the generation of an active secreted form of the ligand Delta. In this scenario, kuz should act cell non-autonomously. A third possibility is that Kuz is required on the signal-emitting as well as the receiving side. Here I present the clonal analysis of kuz in Drosophila wing. The results show that Kuz acts on the receiving side of the pathway and is not required for Delta signalling. This further confirms the hypothesis that Kuz is required for the release of the intracellular domain of Notch that transduces the signal to the nucleus. The presented results complement recent data that indicate that Kuz can perform the S2 proteolytic cleavage of the Notch receptor that is required for its activation.  相似文献   

17.
The Delta protein is a single-pass transmembrane ligand for the Notch family of receptors. Delta binding to Notch invokes regulated intramembrane proteolysis and nuclear translocation of the Notch intracellular domain. Delta is proteolytically processed at two sites, Ala(581) and Ala(593) in the juxtamembrane and transmembrane domains, respectively (Mishra-Gorur, K., Rand, M. D., Perez-Villamil, B., and Artavanis-Tsakonas, S. (2002) J. Cell Biol. 159, 313-324). Controversy over the role of Delta processing in propagating Notch signals has stemmed from conflicting reports on the activity or inactivity of soluble extracellular domain products of Delta. We have examined Delta proteolysis in greater detail and report that Delta undergoes three proteolytic cleavages in the region of the juxtamembrane and transmembrane domains. Only one of these cleavages, analogous to cleavage at Ala(581), is dependent on the Kuzbanian ADAM metalloprotease. The two additional cleavages correspond to the previously described cleavage at Ala(593) and a novel unidentified site within or close to the transmembrane domain. Delta processing is up-regulated in co-cultures with Notch-expressing cells and is similarly induced by p-aminophenylmercuric acetate, a well documented activator of metalloproteases. Furthermore, expression of a truncated intracellular isoform of Delta shows prominent nuclear localization. Altogether, these data demonstrate a role for Notch in inducing Delta proteolysis and implicate a nuclear function for Delta, consistent with a model of bi-directional signaling through Notch-Delta interactions.  相似文献   

18.
Notch receptors transmit signals between adjacent cells. Signaling is initiated when ligand binding induces metalloprotease cleavage of Notch within an extracellular negative regulatory region (NRR). We present here the X-ray structure of the human NOTCH2 NRR, which adopts an autoinhibited conformation. Extensive interdomain interactions within the NRR bury the metalloprotease site, showing that a substantial conformational movement is necessary to expose this site during activation by ligand. Leukemia-associated mutations in NOTCH1 probably release autoinhibition by destabilizing the conserved hydrophobic core of the NRR.  相似文献   

19.
The mutant form of the intracellular asymmetrically localized Numb membrane-bound protein of Drosophila melanogaster suppresses the negative complementation of certain Abruptex (Ax) mutations of the Notch (N) locus encoding a transmembrane receptor protein in which the Ax mutations are mutations in the epidermal growth factor (EGF)-like repeats of the extracellular domain of the receptor. One model for how Ax mutants affect N function is that they are refractory to an antagonistic signal generated by an excess of N ligands. Genetically numb (nb) is an antagonist of N. In the absence of nb, cells follow the same fate as they would in the presence of a gain-of-function N allele, such as Ax. Numb has been shown to interact with the cytoplasmic domain of Notch. It is therefore suggested that numb counteracts the effect of Abruptex on Notch ligand binding, i.e. that Numb is an antagonist to the activation of the Notch signal generated by Notch ligands. Numb might accomplish this by interfering with the proteolytic cleavage of the Notch intracellular domain at the cell membrane. Thus, it seems possible that the mechanism of negative complementation of certain Ax mutants is the failure of this cleavage. Other possible mechanisms for negative complementation are also discussed.  相似文献   

20.
Cleavage of Notch by furin is required to generate a mature, cell surface heterodimeric receptor that can be proteolytically activated to release its intracellular domain, which functions in signal transduction. Current models propose that ligand binding to heterodimeric Notch (hNotch) induces a disintegrin and metalloprotease (ADAM) proteolytic release of the Notch extracellular domain (NECD), which is subsequently shed and/or endocytosed by DSL ligand cells. We provide evidence for NECD release and internalization by DSL ligand cells, which, surprisingly, did not require ADAM activity. However, losses in either hNotch formation or ligand endocytosis significantly decreased NECD transfer to DSL ligand cells, as well as signaling in Notch cells. Because endocytosis-defective ligands bind hNotch, but do not dissociate it, additional forces beyond those produced through ligand binding must function to disrupt the intramolecular interactions that keep hNotch intact and inactive. Based on our findings, we propose that mechanical forces generated during DSL ligand endocytosis function to physically dissociate hNotch, and that dissociation is a necessary step in Notch activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号