共查询到20条相似文献,搜索用时 0 毫秒
1.
Endoplasmic reticulum-associated protein degradation 总被引:10,自引:0,他引:10
The quality control system in the endoplasmic reticulum of eukaryotic cells ensures that newly synthesized proteins that fail to fold into the correct conformation or unassembled orphan subunits of oligomeric proteins are rapidly eliminated by proteolytic degradation. This entails the export of proteins from the endoplasmic reticulum to the cytosol followed by their destruction by the cytosolic ubiquitin/proteasome pathway. While this mechanism effectively prevents the cellular accumulation of non-functional or unwanted endogenous proteins, it renders the cell vulnerable to certain viruses and toxins that are able to subvert this degradative mechanism for their own advantage. 相似文献
2.
Quality control mechanisms in the endoplasmic reticulum (ER) ensure that misfolded proteins are recognized and targeted for degradation. According to the current view of ER-associated degradation (ERAD), the degradation does not occur in the ER itself but requires the retrotranslocation of the proteins to the cytosol where they are degraded by proteasomes. Although this model appears to be valid for many different proteins a number of exceptions from this rule suggest that additional proteasome-independent ERAD pathways may exist. In this review, we will summarize what is known about these alternative ERAD pathways. 相似文献
3.
《Molecular membrane biology》2013,30(8):448-464
AbstractThe presence of two basic amino acids strategically located within a single spanning transmembrane region has previously been shown to act as a signal for the endoplasmic reticulum associated degradation (ERAD) of several polypeptides. In contrast, the functionality of this degron motif within the context of a polytopic membrane protein has not been established. Using opsin as a model system, we have investigated the consequences of inserting the degron motif in the first of its seven transmembrane (TM) spans. Whilst these basic residue reduce the binding of the targeting factor, signal recognition particle, to the first TM span, this has no effect on membrane integration in vitro or in vivo. This most likely reflects the presence of multiple TM spans that can act as targeting signals within in the nascent opsin chain. We find that the degron motif leads to the efficient retention of mutant opsin chains at the endoplasmic reticulum. The mutant opsin polypeptides are degraded via a proteasomal pathway that involves the actions of the E3 ubiquitin ligase HRD1. In contrast, wild-type opsin remains stable for a prolonged period even when artificially accumulated at the endoplasmic reticulum. We conclude that a single dibasic degron motif is sufficient to initiate both the ER retention and subsequent degradation of ospin via an ERAD pathway. 相似文献
4.
Frenkel Z Gregory W Kornfeld S Lederkremer GZ 《The Journal of biological chemistry》2003,278(36):34119-34124
Endoplasmic reticulum-associated degradation of misfolded or misprocessed glycoproteins in mammalian cells is prevented by inhibitors of class I alpha-mannosidases implicating mannose trimming from the precursor oligosaccharide Glc3Man9GlcNAc2 as an essential step in this pathway. However, the extent of mannose removal has not been determined. We show here that glycoproteins subject to endoplasmic reticulum-associated degradation undergo reglucosylation, deglucosylation, and mannose trimming to yield Man6GlcNAc2 and Man5GlcNAc2. These structures lack the mannose residue that is the acceptor of glucose transferred by UDP-Glc:glycoprotein glucosyltransferase. This could serve as a mechanism for removal of the glycoproteins from folding attempts catalyzed by cycles of reglucosylation and calnexin/calreticulin binding and result in targeting of these molecules for proteasomal degradation. 相似文献
5.
De Keukeleire B Micoud J Biard J Benharouga M 《The international journal of biochemistry & cell biology》2008,40(9):1729-1742
Proteasome degradation of endoplasmic reticulum (ER)-misfolded proteins requires retrograde transport from ER to the cytosol. To date, it is not clear whether this event constitutes the exclusive ER degradation process for non-native membrane proteins. Here we describe the role of GTP in the degradation of DeltaF508-CFTR and the alpha subunit of the T-cell receptor (TCRalpha), representative misfolded ER membrane proteins. Selective intracellular GTP depletion extended the DeltaF508-CFTR half-life sixfold, whereas ATP depletion accelerated its turnover and inhibited only 80% of the proteasome activity that was not affected by GTP depletion. AlF(4)(-), a well-known inhibitor of heterotrimeric G proteins, but not of AlF(3), delayed the mutant CFTR turnover in vivo, in semi-intact cells and in ER-enriched microsomes, without affecting ER to Golgi cargo transport. DeltaF508-CFTR degradation was also inhibited by alkaline stripping of ER-associated membrane proteins. We propose that at the ER, GTP may participate in the disposal of misfolded membrane proteins through activation of heterotrimeric G proteins. 相似文献
6.
Chantret I Kodali VP Lahmouich C Harvey DJ Moore SE 《The Journal of biological chemistry》2011,286(48):41786-41800
In Saccharomyces cerevisiae, proteins with misfolded lumenal, membrane, and cytoplasmic domains are cleared from the endoplasmic reticulum (ER) by ER-associated degradation (ERAD)-L, -M, and -C, respectively. ERAD-L is N-glycan-dependent and is characterized by ER mannosidase (Mns1p) and ER mannosidase-like protein (Mnl1p), which generate Man(7)GlcNAc(2) (d1) N-glycans with non-reducing α1,6-mannosyl residues. Glycoproteins bearing this motif bind Yos9p and are dislocated into the cytoplasm and then deglycosylated by peptide N-glycanase (Png1p) to yield free oligosaccharides (fOS). Here, we examined yeast fOS metabolism as a function of cell growth in order to obtain quantitative and mechanistic insights into ERAD. We demonstrate that both Png1p-dependent generation of Man(7-10)GlcNAc(2) fOS and vacuolar α-mannosidase (Ams1p)-dependent fOS demannosylation to yield Man(1)GlcNAc(2) are strikingly up-regulated during post-diauxic growth which occurs when the culture medium is depleted of glucose. Gene deletions in the ams1Δ background revealed that, as anticipated, Mns1p and Mnl1p are required for efficient generation of the Man(7)GlcNAc(2) (d1) fOS, but for the first time, we demonstrate that small amounts of this fOS are generated in an Mnl1p-independent, Mns1p-dependent pathway and that a Man(8)GlcNAc(2) fOS that is known to bind Yos9p is generated in an Mnl1p-dependent, Mns1p-independent manner. This latter observation adds mechanistic insight into a recently described Mnl1p-dependent, Mns1p-independent ERAD pathway. Finally, we show that 50% of fOS generation is independent of ERAD-L, and because our data indicate that ERAD-M and ERAD-C contribute little to fOS levels, other important processes underlie fOS generation in S. cerevisiae. 相似文献
7.
Ricin and its A chains can be used to conjugate with monoclonal antibodies to prepare immunotoxins. Ricin A chain (RTA) and its modification RTA-KDEL (ER-retrieval signal) were expressed with the pKK223.3 system in Escherichia coli under control of a tac promoter. The recombinant proteins can be purified by one-step affinity chromatography on a column of Blue-Sepharose 6B. The toxicities of RTA and its mutant RTA-KDEL were evaluated by the MTT assay in HeLa, MCF, and ECV-304 cells following fluid-phase endocytosis. RTA-KDEL was somewhat more cytotoxic than RTA itself in the different cell lines. The results suggest that rRTA-KDEL may be useful for the synthesis of more potent immunotoxins. 相似文献
8.
Loertscher J Larson LL Matson CK Parrish ML Felthauser A Sturm A Tachibana C Bard M Wright R 《Eukaryotic cell》2006,5(4):712-722
Endoplasmic reticulum-associated degradation (ERAD) mediates the turnover of short-lived and misfolded proteins in the ER membrane or lumen. In spite of its important role, only subtle growth phenotypes have been associated with defects in ERAD. We have discovered that the ERAD proteins Ubc7 (Qri8), Cue1, and Doa10 (Ssm4) are required for growth of yeast that express high levels of the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Interestingly, the observed growth defect was exacerbated at low temperatures, producing an HMGR-dependent cold sensitivity. Yeast strains lacking UBC7, CUE1, or DOA10 also assembled aberrant karmellae (ordered arrays of membranes surrounding the nucleus that assemble when HMGR is expressed at high levels). However, rather than reflecting the accumulation of abnormal karmellae, the cold sensitivity of these ERAD mutants was due to increased HMGR catalytic activity. Mutations that compromise proteasomal function also resulted in cold-sensitive growth of yeast with elevated HMGR, suggesting that improper degradation of ERAD targets might be responsible for the observed cold-sensitive phenotype. However, the essential ERAD targets were not the yeast HMGR enzymes themselves. The sterol metabolite profile of ubc7Delta cells was altered relative to that of wild-type cells. Since sterol levels are known to regulate membrane fluidity, the viability of ERAD mutants expressing normal levels of HMGR was examined at low temperatures. Cells lacking UBC7, CUE1, or DOA10 were cold sensitive, suggesting that these ERAD proteins have a role in cold adaptation, perhaps through effects on sterol biosynthesis. 相似文献
9.
M. V. Pimm B. Gunn J. M. Lord R. W. Baldwin 《Cancer immunology, immunotherapy : CII》1990,32(4):235-240
Summary Two monoclonal antibodies against ricin toxin A chain (RTA) have been examined for their effects on the blood survival and biodistribution of RTA and recombinant ricin A chain in mice. When admixed with the toxins at 1:1 molar ratios prior to intravenous injection, the antibodies prolonged blood survival and whole-body retention of both species of RTA, and this was due essentially to reduced renal clearance of the toxins. Immune complexes were identified by gel filtration chromatography and immune precipitation with anti-IgG antiserum in mixtures prior to injection and in the serum of mice injected with the mixtures. An irrelevant monoclonal antibody showed no complex formation, and no effect on biodistribution. These studies have shown that immune complexes formed between monoclonal antibodies and protein antigens of molecular mass up to at least 30 kDa survive in the circulation, rather than being cleared by the reticuloendothelial system. Such antibodies could be used to modulate the biodistribution of toxic molecules such as ribosome-inhibiting proteins like RTA. This might be exploited therapeutically, for example in the construction of bispecific antibodies against ribosomal inhibiting proteins and tumour-associated antigens. 相似文献
10.
Zhou CL Zemla AT Roe D Young M Lam M Schoeniger JS Balhorn R 《Bioinformatics (Oxford, England)》2005,21(14):3089-3096
MOTIVATION: Specific and sensitive ligand-based protein detection assays that employ antibodies or small molecules such as peptides, aptamers or other small molecules require that the corresponding surface region of the protein be accessible and that there be minimal cross-reactivity with non-target proteins. To reduce the time and cost of laboratory screening efforts for diagnostic reagents, we developed new methods for evaluating and selecting protein surface regions for ligand targeting. RESULTS: We devised combined structure- and sequence-based methods for identifying 3D epitopes and binding pockets on the surface of the A chain of ricin that are conserved with respect to a set of ricin A chains and unique with respect to other proteins. We (1) used structure alignment software to detect structural deviations and extracted from this analysis the residue-residue correspondence, (2) devised a method to compare corresponding residues across sets of ricin structures and structures of closely related proteins, (3) devised a sequence-based approach to determine residue infrequency in local sequence context and (4) modified a pocket-finding algorithm to identify surface crevices in close proximity to residues determined to be conserved/unique based on our structure- and sequence-based methods. In applying this combined informatics approach to ricin A, we identified a conserved/unique pocket in close proximity (but not overlapping) the active site that is suitable for bi-dentate ligand development. These methods are generally applicable to identification of surface epitopes and binding pockets for development of diagnostic reagents, therapeutics and vaccines. 相似文献
11.
Sevilla LM Comstock SS Swier K Miller J 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(4):2586-2593
The quality control system in the secretory pathway can identify and eliminate misfolded proteins through endoplasmic reticulum-associated degradation (ERAD). ERAD is thought to occur by retrotranslocation through the Sec61 complex into the cytosol and degradation by the proteasome. However, the extent of disassembly of oligomeric proteins and unfolding of polypeptide chains that is required for retrotranslocation is not fully understood. In this report we used a glycosylation mutant of the p41 isoform of invariant chain (Ii) to evaluate the ability of ERAD to discriminate between correctly folded and misfolded subunits in an oligomeric complex. We show that loss of glycosylation at position 239 of p41 does not detectably affect Ii trimerization or association with class II but does result in a defect in endoplasmic reticulum export of Ii that ultimately leads to its degradation via the ERAD pathway. Although class II associated with the mutated form of p41 is initially retained in the endoplasmic reticulum, it is subsequently released and traffics through the Golgi to the plasma membrane. ERAD-mediated degradation of the mutant p41 is dependent on mannose trimming and inhibition of mannosidase I stabilizes Ii. Interestingly, inhibition of mannosidase I also results in prolonged association between the mutant Ii and class II, indicating that complex disassembly and release of class II is linked to mannosidase-dependent ERAD targeting of the misfolded Ii. These results suggest that the ERAD machinery can induce subunit disassembly, specifically targeting misfolded subunits to degradation and sparing properly folded subunits for reassembly and/or export. 相似文献
12.
A J Cumber J H Westwood R V Henry G D Parnell B F Coles E J Wawrzynczak 《Bioconjugate chemistry》1992,3(5):397-401
The importance of the various structural elements constituting a ricin A chain immunotoxin to the stability of the disulfide bond between the antibody and A chain was examined using a panel of immunoconjugates prepared with the mouse monoclonal antibody Fib75. Analogues of the standard ricin A chain immunotoxin prepared with the N-succinimidyl 3-(2-pyridyldithio)propionate disulfide cross-linker included immunoconjugates made with N-succinimidyl 4-[(iodoacetyl)amino]benzoate the thioether cross-linker; with N-succinimidyl 3-(2-pyridyldithio)butyrate, the hindered disulfide cross-linker; with a peptide spacer between the antibody and cross-linker; or with the dodecapeptide corresponding to the C-terminus of ricin A chain. The cytotoxic activities of the immunoconjugates and their susceptibility to reduction by glutathione in vitro were compared. The thioether-linked immunotoxin could not be cleaved by glutathione in vitro and had low cytotoxic potency, consistent with the requirement of a reducible disulfide linkage for activity. The hindered disulfide-linked immunotoxin was 3-fold more stable to reduction than the immunotoxin containing a standard unhindered disulfide linkage, but the cytotoxic activities of the two constructs were indistinguishable. The introduction of a flexible peptide Ala-Ala-Pro-Ala-Ala-Ala-Pro-Ala-Pro-Ala between Fib75 and the disulfide linkage introduced by SPDP had no deleterious effect on cytotoxic activity and no effect on the susceptibility of the disulfide linkage to reduction. This finding suggests that the enforced proximity of the A chain to the antibody caused by the use of a short chemical cross-linker in a conventional immunotoxin has no influence on either of these properties in this system.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
Wei Tang Haolang Jiang Osakina Aron Min Wang Xueyu Wang Jiangfeng Chen Birong Lin Xuehang Chen Qiaojia Zheng Xiuqin Gao Dou He Airong Wang Zonghua Wang 《Environmental microbiology》2020,22(12):4953-4973
Most secretory proteins are folded and modified in the endoplasmic reticulum (ER); however, protein folding is error-prone, resulting in toxic protein aggregation and cause ER stress. Irreversibly misfolded proteins are subjected to ER-associated degradation (ERAD), modified by ubiquitination, and degraded by the 26S proteasome. The yeast ERAD ubiquitin ligase Hrd1p and multispanning membrane protein Der1p are involved in ubiquitination and transportation of the folding-defective proteins. Here, we performed functional characterization of MoHrd1 and MoDer1 and revealed that both of them are localized to the ER and are pivotal for ERAD substrate degradation and the ER stress response. MoHrd1 and MoDer1 are involved in hyphal growth, asexual reproduction, infection-related morphogenesis, protein secretion and pathogenicity of M. oryzae. Importantly, MoHrd1 and MoDer1 mediated conidial autophagic cell death and subsequent septin ring assembly at the appressorium pore, leading to abnormal appressorium development and loss of pathogenicity. In addition, deletion of MoHrd1 and MoDer1 activated the basal unfolded protein response (UPR) and autophagy, suggesting that crosstalk between ERAD and two other closely related mechanisms in ER quality control system (UPR and autophagy) governs the ER stress response. Our study indicates the importance of ERAD function in fungal development and pathogenesis of M. oryzae. 相似文献
14.
Immunotoxins containing ricin or its A chain 总被引:5,自引:0,他引:5
In this chapter we describe the development of first generation immunotoxins containing ricin and its A chain. The roles of the ligand, linker and toxin in generating highly specific in vivo reagents are discussed. The problems associated with first generation immunotoxins in the clinic, and the subsequent development and performance of second generation reagents are described. Finally, future directions for the successful application of these reagents to the therapy of cancer, autoimmunity, transplantation, and infectious diseases are outlined. 相似文献
15.
Edward J. Wawrzynczak Graham J. Watson Alan J. Cumber Raymond V. Henry Geoffrey D. Parnell E. Peter Rieber Philip E. Thorpe 《Cancer immunology, immunotherapy : CII》1991,32(5):289-295
Summary An immunotoxin consisting of ricin A chain linked to the monoclonal antibody M-T151, recognising the CD4 antigen, was weakly toxic to the human T-lymphoblastoid cell line CEM in tissue culture. The incorporation of [3H]leucine by CEM cells was inhibited by 50% at an M-T151-ricin-A-chain concentration (IC50) of 4.6 nM compared with an IC50 of 1.0 pM for ricin. In contrast, immunotoxins made by linking intact ricin to M-T151 in such a way that the galactose-binding sites of the B chain subunit were either blocked sterically by the antibody component or were left unblocked, were both powerfully cytotoxic with IC50 values of 20–30 pM. The addition of ricin B chain to CEM cells treated with M-T151—ricin-A-chain enhanced cytotoxicity by only eight-fold indicating that isolated B chain potentiated the action of the A chain less effectively than it did as an integral component of an intact ricin immunotoxin. Ricin B chain linked to goat anti-(mouse immunoglobulin) also potentiated weakly.Lactose completely inhibited the ability of isolated ricin B chain to potentiate the cytotoxicity of M-T151—ricin-A-chain and partially (3- to 4-fold) inhibited the cytotoxicity of the blocked and non-blocked ricin immunotoxins. Thus, in this system, the galactose-binding sites of the B chain contributed to cell killing regardless of whether isolated B chain was associated with the A chain immunotoxin or was present in blocked or non-blocked form as part of an intact ricin immunotoxin. The findings suggest that the blocked ricin immunotoxin may become unblocked after binding to the target antigen to re-expose the cryptic galactose-binding sites. However, the unblocking cannot be complete because the maximal inhibition of [3H]leucine incorporation by the blocked immunotoxin was only 80% compared with greater than 99% inhibition by the non-blocked immunotoxin. 相似文献
16.
A chimaeric gene was constructed encoding the pre-sequence of the 33 kDa oxygen-evolving complex protein from wheat (a thylakoid lumen protein) linked to ricin A chain. The fusion protein is efficiently imported by isolated pea chloroplasts and localised partly in the stroma, with the remainder bound to the stromal surface of the thylakoids. The imported protein is fully processed by both the stromal and thylakoidal processing peptidases, indicating that partial or complete translocation across the thylakoid membrane has taken place. 相似文献
17.
Work from several laboratories has indicated that many different proteins are subject to endoplasmic reticulum (ER) degradation by a common ER-associated machinery. This machinery includes ER membrane proteins Hrd1p/Der3p and Hrd3p and the ER-associated ubiquitin-conjugating enzymes Ubc7p and Ubc6p. The wide variety of substrates for this degradation pathway has led to the reasonable hypothesis that the HRD (Hmg CoA reductase degradation) gene-encoded proteins are generally involved in ER protein degradation in eukaryotes. We have tested this model by directly comparing the HRD dependency of the ER-associated degradation for various ER membrane proteins. Our data indicated that the role of HRD genes in protein degradation, even in this highly defined subset of proteins, can vary from absolute dependence to complete independence. Thus, ER-associated degradation can occur by mechanisms that do not involve Hrd1p or Hrd3p, despite their apparently broad envelope of substrates. These data favor models in which the HRD gene-encoded proteins function as specificity factors, such as ubiquitin ligases, rather than as factors involved in common aspects of ER degradation. 相似文献
18.
Mannose receptor-mediated uptake of ricin toxin and ricin A chain by macrophages. Multiple intracellular pathways for a chain translocation 总被引:4,自引:0,他引:4
The role of the high mannose carbohydrate chains in the mechanism of action of ricin toxin was investigated. Ricin is taken up by two routes in macrophages, by binding to cell surface mannose receptors, or by binding of the ricin galactose receptor to cell surface glycoproteins. Removal of carbohydrate from ricin by periodate oxidation led to a large loss in toxicity via both routes of uptake by an effect on the B chain not due to a loss of galactose binding affinity. These data suggest that the carbohydrate chains of ricin B chain may be required for full toxicity. The pathway of uptake of ricin by the macrophage mannose receptor was found to differ in several respects from uptake via the galactose-specific pathway. Analysis of intoxication of macrophages by ricin in the presence of ammonium chloride suggested that mannose receptor bound ligand passes through acidic vesicles prior to translocation, unlike galactose bound ligand. Intoxication by ricin via galactose-specific uptake was potentiated by swainsonine but not by castanospermine, suggesting that ricin may be attacked by an endogenous mannosidase within the cell, and that ricin passes through either a lysosomal or a Golgi compartment prior to translocation. 相似文献
19.
20.
D. Mlsna A. F. Monzingo B. J. Katzin S. Ernst J. D. Robertus 《Protein science : a publication of the Protein Society》1993,2(3):429-435
The plant cytotoxin ricin is a heterodimer with a cell surface binding (B) chain and an enzymatically active A chain (RTA) known to act as a specific N-glycosidase. RTA must be separated from B chain to attack rRNA. The X-ray structure of ricin has been solved recently; here we report the structure of the isolated A chain expressed from a clone in Escherichia coli. This structure of wild-type rRTA has and will continue to serve as the parent compound for difference Fouriers used to assess the structure of site-directed mutants designed to analyze the mechanism of this medically and commercially important toxin. The structure of the recombinant protein, rRTA, is virtually identical to that seen previously for A chain in the heterodimeric toxin. Some minor conformational changes due to interactions with B chain and to crystal packing differences are described. Perhaps the most significant difference is the presence in rRTA of an additional active site water. This molecule is positioned to act as the ultimate nucleophile in the depurination reaction mechanism proposed by Monzingo and Robertus (1992, J. Mol. Biol. 227, 1136-1145). 相似文献