首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase behavior of partially hydrated 1, 2-dioleoylphosphatidylethanolamine (DOPE) has been studied using differential scanning calorimetry and X-ray diffraction methods together with water sorption isotherms. DOPE liposomes were dehydrated in the H(II) phase at 29 degrees C and in the L(alpha) phase at 0 degrees C by vapor phase equilibration over saturated salt solutions. Other samples were prepared by hydration of dried DOPE by vapor phase equilibration at 29 degrees C and 0 degrees C. Five lipid phases (lamellar liquid crystalline, L(alpha); lamellar gel, L(beta); inverted hexagonal, H(II); inverted ribbon, P(delta); and lamellar crystalline, L(c)) and the ice phase were observed depending on the water content and temperature. The ice phase did not form in DOPE suspensions containing <9 wt% water. The L(c) phase was observed in samples with a water content of 2-6 wt% that were annealed at 0 degrees C for 2 or more days. The L(c) phase melted at 5-20 degrees C producing the H(II) phase. The P(delta) phase was observed at water contents of <0.5 wt%. The phase diagram, which includes five lipid phases and two water phases (ice and liquid water), has been constructed. The freeze-induced dehydration of DOPE has been described with the aid of the phase diagram.  相似文献   

2.
In order to understand the effect of polar head group modification on the thermotropic and barotropic phase behavior of phospholipid bilayer membranes, the phase transitions of dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidyl-N-methylethanolamine (DPMePE), dipalmitoylphosphatidyl-N,N-dimethylethanolamine (DPMe2PE) and dipalmitoylphosphatidylcholine (DPPC) bilayer membranes were observed by differential scanning calorimetry and high-pressure optical methods. The temperatures of the so-called main transition from the gel (L(beta)) or ripple gel (P(beta)') phase to the liquid crystalline (L(alpha)) phase were almost linearly elevated by applying pressure. The slope of the temperature-pressure boundary, dT/dp, was in the range of 0.220-0.264 K MPa(-1) depending on the number of methyl groups in the head group of lipids. The main-transition temperatures of N-methylated DPPEs decreased with increasing size of head group by stepwise N-methylation. On the other hand, there was no significant difference in thermodynamic quantities of the main transition between the phospholipids. With respect to the transition from the subgel (L(c)) phase to the lamellar gel (L(beta) or L(beta)') phase, the transition temperatures were also elevated by applying pressure. In the case of DPPE bilayer the L(c)/L(beta) transition appeared at a pressure higher than 21.8 MPa. At a pressure below 21.8 MPa the L(c)/L(alpha) transition was observed at a temperature higher than the main-transition temperature. The main (L(beta)/L(alpha)) transition can be recognized as the transformation between metastable phases in the range from ambient pressure to 21.8 MPa. Polymorphism in the gel phase is characteristic of DPPC bilayer membrane unlike other lipid bilayers used in this study: the L(beta)', P(beta)' and pressure-induced interdigitated gel (L(beta)I) phases were observed only in the DPPC bilayer. Regarding the bilayers of DPPE, DPMePE and DPMe2PE, the interdigitation of acyl chain did not appear even at pressures as high as 200 MPa.  相似文献   

3.
We investigated the thermotropic and barotropic bilayer phase behavior of 1-myristoyl-2-oleoyl-sn-glycero-3-phosphocholine (MOPC) and 1-oleoyl-2-myristoyl-sn-glycero-3-phosphocholine (OMPC) by means of the differential scanning calorimetry (DSC) and high-pressure light-transmittance technique. Water could be used as a solvent for measurements at high pressures because of the elevation of the transition temperatures above 0 degrees C by pressurization, whereas aqueous 50 wt.% ethylene glycol solution was used mainly for those at low pressures. Only one phase transition was observed in the DSC thermogram of the MOPC bilayer membrane as an endothermic peak, and also observed at high pressures as an abrupt change of the light-transmittance. The transition was assigned as a main transition between the lamellar gel (L(beta)) and liquid-crystalline (L(alpha)) phases on the basis of the values of enthalpy change (DeltaH) and slope of the transition temperature with respect to pressure (dT/dP). The DSC thermogram of the OMPC bilayer membrane similarly showed a single endothermic peak but two kinds of phase transitions were observed at different temperatures in the light-transmittance profile at high pressures. The extrapolation of the lower-temperature transition in the high-pressure range to an ambient pressure coincided with the transition observed in the DSC thermogram. This transition was identified as a transition between the lamellar crystal (L(c)) and L(alpha) (or L(beta)) phases from the DeltaH and dT/dP values. The higher-temperature transition, appearing only at high pressures, was identified as the L(beta)/L(alpha) transition considering the topological resemblance of its temperature-pressure phase diagram as that of the dioleoylphosphatidylcholine bilayer membrane. The phase diagram of the OMPC bilayer membrane demonstrated that the L(beta) phase cannot exist at pressures below ca. 190 MPa while it can exist stably in a finite temperature range at pressures above the pressure.  相似文献   

4.
The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.  相似文献   

5.
The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase. Our results also suggest that shorter chain homologues form L(c) phases that are structurally related to, but more ordered than, those formed by the longer chain homologues, but that these L(c) phases are less ordered than those formed by other phospholipids. These studies also suggest that polar/apolar interfaces of the phosphatidylserine bilayers are more hydrated than those of other glycerolipid bilayers, possibly because of interactions between the polar headgroup and carbonyl groups of the fatty acyl chains.  相似文献   

6.
Phosphatidylserine (PS), an anionic phospholipid of significant biological relevance, forms a multilamellar phase in water with net negative surface charge at pH 7.0. In this study we mixed dioleoylPS (DOPS) with reverse hexagonal (H(II))-forming phosphatidylethanolamine (DOPE), and used x-ray diffraction and osmotic stress to quantify its spontaneous curvature (1/R(0p)) and bending modulus (K(cp)). The mixtures were stable H(II) phases from 5 to 30 mol% PS, providing 16 wt% tetradecane (td) was also added to relieve chain-packing stress. The fully hydrated lattice dimension increased with DOPS concentration. Analysis of structural changes gave an apparent R(0p) for DOPS of +144 A; opposite in sign and relatively flat compared to DOPE (-30 A). Osmotic stress of the H(II) phases did not detect a significantly different bending modulus (K(cp)) for DOPS as compared to DOPE. At pH < or = 4.0, DOPS (with no td) adopted the H(II) phase on its own, in agreement with previous results, suggesting a reversal in curvature upon protonation of the serine headgroup. In contrast, when td was present, DOPS/td formed a lamellar phase of limited swelling whose dimension increased with pH. DOPS/DOPE/td mixtures formed H(II) phases whose dimension increased both with pH and with DOPS content. With tetradecane, estimates put 1/R(0p) for DOPS at pH 2.1 at zero. Tetradecane apparently affects the degree of dissociation of DOPS at low pH.  相似文献   

7.
We have synthesized a homologous series of saturated 1,2-di-O-n-acyl-3-O-(beta-D-galactopyranosyl)-sn-glycerols with odd- and even-numbered hydrocarbon chains ranging in length from 10 to 20 carbon atoms, and have investigated their physical properties using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. The DSC results show a complex pattern of phase behaviour, which in a typical preheated sample consists of a lower temperature, moderately energetic lamellar gel/lamellar liquid-crystalline (L(beta)/L(alpha)) phase transition and a higher temperature, weakly energetic lamellar/nonlamellar phase transition. On annealing at a suitable temperature below the L(beta)/L(alpha) phase transition, the L(beta) phase converts to a lamellar crystalline (L(c1)) phase which may undergo a highly energetic L(c1)/L(alpha) or L(c1)/inverted hexagonal (H(II)) phase transition at very high temperatures on subsequent heating or convert to a second L(c2) phase in certain long chain compounds on storage at or below 4 degrees C. The transition temperatures and phase assignments for these galactolipids are supported by our XRD and FTIR spectroscopic measurements. The phase transition temperatures of all of these events are higher than those of the comparable phase transitions exhibited by the corresponding diacyl alpha- and beta-D-glucosyl glycerols. In contrast, the L(beta)/L(alpha) and lamellar/nonlamellar phase transition temperatures of the beta-D-galactosyl glycerols are lower than those of the corresponding diacyl phosphatidylethanolamines (PEs) and these glycolipids form inverted cubic phases at temperatures between the lamellar and H(II) phase regions. Our FTIR measurements indicate that in the L(beta) phase, the hydrocarbon chains form a hexagonally packed structure in which the headgroup and interfacial region are undergoing rapid motion, whereas the L(c) phase consists of a more highly ordered, hydrogen-bonded phase, in which the chains are packed in an orthorhombic subcell similar to that reported for the diacyl-beta-D-glucosyl-sn-glycerols. A comparison of the DSC data presented here with our earlier studies of other diacyl glycolipids shows that the rate of conversion from the L(beta) to the L(c) phase in the beta-D-galactosyl glycerols is slightly faster than that seen in the alpha-D-glucosyl glycerols and much faster than that seen in the corresponding beta-D-glucosyl glycerols. The similarities between the FTIR spectra and the first-order spacings for the lamellar phases in both the beta-D-glucosyl and galactosyl glycerols suggest that the headgroup orientations may be similar in both beta-anomers in all of their lamellar phases. Thus, the differences in their L(beta)/L(c) conversion kinetics and the lamellar/nonlamellar phase properties of these lipids probably arise from subtly different hydration and H-bonding interactions in the headgroup and interfacial regions of these phases. In the latter case, such differences would be expected to alter the ability of the polar headgroup to counterbalance the volume of the hydrocarbon chains. This perspective is discussed in the context of the mechanism for the L(alpha)/H(II) phase transition which we recently proposed, based on our X-ray diffraction measurements of a series of PEs.  相似文献   

8.
The mechanism of the effects of the lanthanum ion (La(3+)) and the gadolinium ion (Gd(3+)), which are lanthanides, on the function of membrane proteins and the stability of the membrane structure is not well understood. We investigated the effects of La(3+) on the stability of the hexagonal II (H(II)) phase of the phosphatidylethanolamine (PE) membrane at 20 degrees C by small-angle X-ray scattering. As PE membrane we used DPOPE (dipalmitoleoylphosphatidylethanolamine) membrane, which was in the L(alpha) phase in 10 mM PIPES buffer (pH 7.4) at 20 degrees C. An L(alpha) to H(II) phase transition occurred in the DPOPE membrane at 1.4 mM La(3+) in 0 M KCl, and at 0.4 mM La(3+) in 0.5 M KCl and above the critical concentrations the membranes were in the H(II) phase, indicating that La(3+) stabilizes the H(II) phase rather than the L(alpha) phase. The basis vector length, d, of DPOPE and DOPE (dioleoylphosphatidylethanolamine) membranes containing 16 wt% tetradecane in excess water condition did not change with an increase in La(3+) concentration, suggesting that La(3+) did not change the spontaneous curvature of these PE monolayer membranes. The chain-melting transition temperature of the dielaidoylphosphatidylethanolamine membrane increased with an increase in La(3+) concentration, indicating that the lateral compression pressure increased. To elucidate the effects of a small percentage of 'guest' lipids with longer acyl chains than the average length of 'host' lipids on the stability of the H(II) phase, we investigated the effects of the concentration of a guest lipid (DOPE) in a host lipid (DPOPE) membrane on their phase behavior and structure. 12 mol% DOPE induced an L(alpha) to H(II) phase transition in DOPE/DPOPE membrane, without changing the spontaneous curvature of the monolayer membrane. We found that Ca(2+) also induced an L(alpha) to H(II) phase transition in the DPOPE membrane, and compared the effects of Ca(2+) on PE membranes with those of La(3+). Based on these results, we have proposed a new model for the mechanism of the L(alpha) to H(II) phase transition and the stabilization of the H(II) phase by La(3+).  相似文献   

9.
K S Bruzik  M D Tsai 《Biochemistry》1987,26(17):5364-5368
The phase-transition properties of sphingomyelins were investigated in detail with totally synthetic, chemically and stereochemically pure (2S,3R)-(N-stearoylsphingosyl)-1-phosphocholine (D-erythro-C18-SPM) (1) and the corresponding 2S,3S isomer (L-threo-C18-SPM) (2). Heating scans of an unsonicated dispersion of 1 right after hydration showed a main transition (I) at 44.7 degrees C (delta H = 6.8 kcal/mol). Upon incubation at 20-25 degrees C a second transition (II) appeared at 36.0 degrees C (delta H = 5.7 kcal/mol). The two gel phases were designated as G alpha and G beta phases, respectively. The G beta phase was also metastable and relaxed to a third gel phase (G gamma) upon incubation below 10 degrees C. Conversion of the G gamma phase to the liquid-crystalline phase occurred via two new endotherms at 33.4 degrees C (2.6 kcal/mol) (III) and 43.6 degrees C (8.0 kcal/mol) (IV) as well as a main transition at 44.7 degrees C (9.5 kcal/mol). Possible interpretations have been proposed to account for the observed phase transitions. The L-threo isomer 2 showed similar thermotropic behavior to dipalmitoylphosphatidylcholine (DPPC): a "main transition" at 44.2 degrees C (6.0 kcal/mol), a "pretransition" at 43.1 degrees C (1.8 kcal/mol), and upon incubation at 7 degrees C for 2 weeks, a very broad "subtransition" at ca. 35 degrees C. The results are substantially different from previous studies of sphingomyelins using mixtures of stereoisomers. Mixing of 1 with 2, 1 with DPPC, and 2 with DPPC removed the metastability of the gel phase and resulted in a single transition.  相似文献   

10.
The thermodynamic properties of fully-hydrated lipids provide important information about the stability of membranes and the energetic interactions of lipid bilayers with membrane proteins (Nagle and Scott, Physics Today, 2:39, 1978). The lamellar/inverse hexagonal (L(alpha)-H(II)) phase transition of 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) water mixtures is a first-order transition and, therefore, at constant pressure, must have a thermodynamically well-defined equilibrium transition temperature. The observed transition temperature is known to be dependent upon the rate at which the temperature is changed, which accounts for the many different values in the literature. X-ray diffraction was used to study the phase transition of fully-hydrated DOPE to determine the rate-independent transition temperature, T(LH). Samples were heated or cooled for a range of rates, 0.212 < r < 225 degrees C/hr, and the rate-dependent apparent phase transition temperatures, T(A)(r) were determined from the x-ray data. By use of a model-free extrapolation method, the transition temperature was found to be T(LH) = 3.33 +/- 0.16 degrees C. The hysteresis, /T(A)(r) - T(LH)/, was identical for heating and cooling rates, +/-r, and varied as /r/beta for beta approximately 1/4. This unexpected power-law relationship is consistent with a previous study (Tate et al., Biochemistry, 31:1081-1092, 1992) but differs markedly from the exponential behavior of activation barrier kinetics. The methods used in this study are general and provide a simple way to determine the true mesomorphic phase transition temperatures of other lipid and lyotropic systems.  相似文献   

11.
Yang L  Ding L  Huang HW 《Biochemistry》2003,42(22):6631-6635
Membrane fusion is a ubiquitous process in eukaryotic cells. When two membranes fuse, lipid must undergo molecular rearrangements at the point of merging. To understand how lipid structure transitions occur, scientists studied the phase transition of lipid between the lamellar (L(alpha)) phase and the inverted hexagonal (H(II)) phase, based on the idea that lipid must undergo a similar rearrangement as in fusion. However, previous investigations on the system of dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE) did not reveal intermediate phases between the L(alpha) and H(II) phases. Recently, we found a rhombohedral phase of diphytanoylphosphatidylcholine between its L(alpha) and H(II) phases using substrate-supported samples. Here we report the observation of two new phases in the DOPC-DOPE system: a rhombohedral phase and a distorted hexagonal phase. The rhombohedral phase confirms the stalk hypothesis for the L(alpha)-H(II) transition, but the phase of stable stalks exists only for a certain range of spontaneous curvature. The distorted hexagonal phase exists only in a lipid mixture. It implies that lipids may demix to adjust its local spontaneous curvature in order to achieve energy minimum under stress.  相似文献   

12.
The thermotropic phase behavior and organization of aqueous dispersions of the quadruple-chained, anionic phospholipid tetramyristoyl diphosphatidylglycerol or tetramyristoyl cardiolipin (TMCL) was studied by differential scanning calorimetry, x-ray diffraction, (31)P NMR, and Fourier-transform infrared (FTIR) spectroscopy. At physiological pH and ionic strength, our calorimetric studies indicate that fully equilibrated aqueous dispersions of TMCL exhibit two thermotropic phase transitions upon heating. The lower temperature transition is much less cooperative but of relatively high enthalpy and exhibits marked cooling hysteresis, whereas the higher temperature transition is much more cooperative and also exhibits a relatively high enthalpy but with no appreciable cooling hysteresis. Also, the properties of these two-phase transitions are sensitive to the ionic strength of the dispersing buffer. Our spectroscopic and x-ray diffraction data indicate that the lower temperature transition corresponds to a lamellar subgel (L(c)') to gel (L(beta)) phase transition and the higher temperature endotherm to a L(beta) to lamellar liquid-crystalline (L(alpha)) phase transition. At the L(c)'/L(beta) phase transition, there is a fivefold increase of the thickness of the interlamellar aqueous space from approximately 11 A to approximately 50 A, and this value decreases slightly at the L(beta)/L(alpha) phase transition. The bilayer thickness (i.e., the mean phosphate-phosphate distance across the bilayer) increases from 42.8 A to 43.5 A at the L(c)'/L(beta) phase transition, consistent with the loss of the hydrocarbon chain tilt of approximately 12 degrees , and decreases to 37.8 A at the L(beta)/L(alpha) phase transition. The calculated cross-sectional areas of the TMCL molecules are approximately 79 A(2) and approximately 83 A(2) in the L(c)' and L(beta) phases, respectively, and we estimate a value of approximately 100 A(2) in the L(alpha) phase. The combination of x-ray and FTIR spectroscopic data indicate that in the L(c)' phase, TMCL molecules possess tilted all-trans hydrocarbon chains packed into an orthorhombic subcell in which the zig-zag planes of the chains are parallel, while in the L(beta) phase the untilted, all-trans hydrocarbon chains possess rotational mobility and are packed into a hexagonal subcell, as are the conformationally disordered hydrocarbon chains in the L(alpha) phase. Our FTIR spectroscopic results demonstrate that the four carbonyl groups of the TMCL molecule become progressively more hydrated as one proceeds from the L(c)' to the L(beta) and then to the L(alpha) phase, while the two phosphate moieties of the polar headgroup are comparably well hydrated in all three phases. Our (31)P-NMR results indicate that although the polar headgroup retains some mobility in the L(c)' phase, its motion is much more restricted in the L(beta) and especially in the L(alpha) phase than that of other phospholipids. We can explain most of our experimental results on the basis of the relatively small size of the polar headgroup of TMCL relative to other phospholipids and the covalent attachment of the two phosphate moieties to a single glycerol moiety, which results in a partially immobilized polar headgroup that is more exposed to the solvent than in other glycerophospholipids. Finally, we discuss the biological relevance of the unique properties of TMCL to the structure and function of cardiolipin-containing biological membranes.  相似文献   

13.
The phase behaviour of aqueous dispersions of a series of synthetic 1,2-di-O-alkyl-3-O-(beta-D-glucosyl)-rac-glycerols with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry and low angle X-ray diffraction (XRD). Thermograms of these lipids show a single, strongly energetic phase transition, which was shown to correspond to either a lamellar gel/liquid crystalline (L(beta)/L(alpha)) phase transition (short chain compounds, n < or =14 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (longer chain compounds, n > or =15 carbon atoms) by XRD. The shorter chain compounds may exhibit additional transitions at higher temperatures, which have been identified as lamellar/nonlamellar phase transitions by XRD. The nature of these nonlamellar phases and the number of associated intermediate transitions can be seen to vary with chain length. The thermotropic phase properties of these lipids are generally similar to those reported for the corresponding 1,2-sn-diacyl alpha- and beta-D-glucosyl counterparts, as well as the recently published 1, 2-dialkyl-3-O-(beta-D-glycosyl)-sn-glycerols. However, the racemic lipids studied here show no evidence of the complex patterns of gel phase polymorphism exhibited by the above mentioned compounds. This suggests that the chirality of the glycerol molecule, by virtue of its position in the interfacial region, may significantly alter the phase properties of a lipid, perhaps by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.  相似文献   

14.
J Shah  R I Duclos  Jr    G G Shipley 《Biophysical journal》1994,66(5):1469-1478
The structural and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine (C(18):C(2)-PC) were studied as a function of hydration. A combination of differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the phase behavior of C(18):C(2)-PC. At low hydration (e.g., 20% H2O), the differential scanning calorimetry heating curve shows a single reversible endothermic transition at 44.6 degrees C with transition enthalpy delta H = 6.4 kcal/mol. The x-ray diffraction pattern at -8 degrees C shows a lamellar structure with a small bilayer periodicity d = 46.3 A and two wide angle reflections at 4.3 and 3.95 A, characteristic of a tilted chain, L beta' bilayer gel structure. Above the main transition temperature, a liquid crystalline L alpha phase is observed with d = 53.3 A. Electron density profiles at 20% hydration suggest that C(18):C(2)-PC forms a fully interdigitated bilayer at -8 degrees C and a noninterdigitated, liquid crystalline phase above its transition temperature (T > Tm). Between 30 and 50% hydration, on heating C(18):C(2)-PC converts from a highly ordered, fully interdigitated gel phase (L beta') to a less ordered, interdigitated gel phase (L beta), which on further heating converts to a noninterdigitated liquid crystalline L alpha phase. However, the fully hydrated (> 60% H2O) C(18):C(2)-PC, after incubation at 0 degrees C, displays three endothermic transitions at 8.9 degrees C (transition I, delta H = 1.6 kcal/mol), 18.0 degrees C (transition II), and 20.1 degrees C (transition III, delta HII+III = 4.8 kcal/mol). X-ray diffraction at -8 degrees C again showed a lamellar gel phase (L beta') with a small periodicity d = 52.3 A. At 14 degrees C a less ordered, lamellar gel phase (L beta) is observed with d = 60.5 A. However, above the transition III, a broad, diffuse reflection is observed at approximately 39 A, consistent with the presence of a micellar phase. The following scheme is proposed for structural changes of fully hydrated C(18):C(2)-PC, occurring with temperature: L beta' (interdigitated)-->L beta (interdigitated)-->L alpha(noninterdigitated)-->Micelles. Thus, at low temperature C(18):C(2)-PC forms a bilayer gel phase (L beta') at all hydrations, whereas above the main transition temperature it forms a bilayer liquid crystalline phase L alpha at low hydrations and a micellar phase at high hydrations (> 60 wt% water).  相似文献   

15.
Frequency-resolved fluorescence measurements have been performed to quantitate the lateral stress of the lipid layer containing nonbilayer phase preferring dioleoylphosphatidylethanolamine (DOPE). On the basis of a new rotational diffusion model, the wobbling diffusion constant (Dw), the curvature-related hopping diffusion constant (DH), and the two local orientational order parameters ([P2] and [P4]) of 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl] carbonyl]-3-sn-phosphatidylcholine (DPH-PC) in fully hydrated DOPE and DOPE/dioleoylphosphatidylcholine (DOPC) mixtures were calculated from the frequency-domain anisotropy data. The values of [P2], [P4], and DH for DOPE were found to increase significantly at approximately 12 degrees C, the known lamellar liquid crystalline (L alpha) to inverted hexagonal (HII) phase transition temperature of DOPE. Similar features as well as a decline of Dw were detected in the DOPE/DOPC mixtures as the DOPE content was increased from 85% to 90% at 23 degrees C, corresponding to the known lyotropic phase transition of the DOPE/DOPC. In contrast, for DOPC (0-40 degrees C) and DOPE/DOPC (0-100% DOPE at 3 degrees C), which remained in the L alpha phase, these changes were not detected. The most probable local orientation of DPH-PC in the DOPE/DOPC mixtures shifted progressively toward the normal of the lipid/water interface as the content of DOPE increased. We concluded that the curvature-related lateral stress in the lipid layer increases with the content of the nonbilayer phase preferring lipids.  相似文献   

16.
The thermotropic phase behavior and organization of model membranes composed of binary mixtures of the quadruple-chained, anionic phospholipid tetramyristoylcardiolipin (TMCL) with the double-chained zwitterionic phospholipid dimyristoylphosphatidylethanolamine (DMPE) were examined by a combination of differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. After equilibration at low temperature, DSC thermograms exhibited by binary mixtures of TMCL and DMPE containing < 80 mol DMPE exhibit a fairly energetic lower temperature endotherm and a highly energetic higher temperature endotherm. As the relative amount of TMCL in the mixture decreases, the temperature, enthalpy and cooperativity of the lower temperature endotherm also decreases and is not calorimetrically detectable when the TMCL content falls below 20 mol%. In contrast, the temperature of the higher temperature endotherm increases as the proportion of TMCL decreases, but the enthalpy and cooperativity both decrease and the transition endotherms become multimodal. The FTIR spectroscopic results indicate that the lower temperature endotherm corresponds to a lamellar crystalline (L(c)) to lamellar gel (L(β)) phase transition and that the higher temperature transition involves the conversion of the L(β) phase to the lamellar liquid-crystalline (L(α)) phase. Moreover, the FTIR spectroscopic signatures observed at temperatures below the onset of the L(c)/L(β) phase transitions are consistent with the coexistence of structures akin to a TMCL-like L(c) phase and the L(β) phase, and with the relative amount of the TMCL-like L(c) phase increasing progressively as the TMCL content of the mixture increases. These latter observations suggest that the TMCL and DMPE components of these mixtures are poorly miscible at temperatures below the L(β)/L(α) phase transition temperature. Poor miscibility of these two components is also suggested by the complexity of the DSC thermograms observed at the L(β)/L(α) phase transitions of these mixtures and with the complex relationship between their L(β)/L(α) phase transition temperatures and the composition of the mixture. Overall, our data suggests that TMCL and DMPE may be intrinsically poorly miscible across a broad composition range, notwithstanding the homogeneity of the fatty acid chains of the two components and the modest (~10 °C) difference between their L(β)/L(α) phase transition temperatures.  相似文献   

17.
The phase and electrochemical behavior of the aqueous mixtures of monoolein (MO) and synthetic ferrocene (Fc) derivatives containing long alkyl chains-(Z)-octadec-9-enoylferrocene (1), (Z)-octadecen-9-ylferrocene (2), and ferrocenylmethyl (Z)-octadec-9-enoate (3)-were studied. At low hydration, the reversed micelles (L(2) phase) and cubic Q(230) phase of MO can accommodate relatively high amounts (>6 wt.%) of the Fc-derivative 2, whereas at high hydration, the pseudoternary cubic phase Q(224) is destabilized even at about 2 wt.% of this Fc. Increasing the Fc-derivative content induces L(alpha)-->L(2) and L(alpha)-->reversed bicontinuous cubic phase (Q(II))-->H(II) transitions depending upon hydration. A rough study of the MO system containing compounds 1 and 3 indicates very similar phase behavior to that of the MO/2/H(2)O system. Compound 2 apparently has no effect on the lipid monolayer thickness in the pseudoternary L(alpha), H(II) and Q(II) liquid crystalline phases of MO. Within a 3D-structure of the Q(224) phase, derivatives 1-3 exhibit electrochemical activity on the gold electrode. The one-electron redox conversion processes are electrochemically quasi-reversible and controlled by diffusion. The values of apparent diffusion coefficient (D(app)) and heterogeneous electron-transfer rate constant (k(s)) of Fcs are significantly lower in the cubic phase matrix when compared to the acetonitrile solution. By contrast, the MO H(II) phase with entrapped Fc-derivatives does not exhibit electrochemical activity on the electrode surface. It is suggested that the diffusional anisotropy and/or localized aggregation of compounds 1-3 within a 2D-structure of the H(II) phase account(s) for the latter observation.  相似文献   

18.
A microscopic study has allowed the analysis of modifications of various shapes acquired by phospholipid vesicles during a hydrostatic pressure treatment of up to 300 MPa. Giant vesicles of dimyristoylphosphatidylcholine / phosphatidylserine (DMPC/PS) prepared at 40°C mainly presented a shape change resembling budding during pressure release. This comportment was reinforced by the incorporation of 1,2-dioleyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or by higher temperature (60°C) processing. The thermotropic main phase transition (Lα to Pβ′) of the different vesicles prepared was determined under pressure through a spectrofluorimetric study of 6-dodecanoyl-2-dimethylamino-naphtalene (Laurdan) incorporated into the vesicles’ bilayer. This analysis was performed by microfluorescence observation of single vesicles. The phase transition was found to begin at about 80 MPa and 120 MPa for DMPC/PS vesicles at, respectively, 40°C and 60°C. At 60°C the liquid-to-gel transition phase was not complete within 250 MPa. Addition of DMPE at 40°C does not significantly shift the onset boundary of the phase transition but extends the transition region. At 40°C, the gel phase was obtained at, respectively, 110 MPa and 160 MPa for DMPC/PS and DMPC/PS/DOPE vesicles. In comparing volume data obtained from image analysis and Laurdan signal, we assume the shape change is a consequence of the difference between lateral compressibility of the membrane and bulk water. The phase transition contributes to the membrane compression but seems not necessary to induce shape change of vesicles. The high compressibility of the Lα phase at 60°C allows induction on DMPC/PS vesicles of a morphological transition without phase change.  相似文献   

19.
We have investigated the effects of the model alpha-helical transmembrane peptide Ac-K(2)L(24)K(2)-amide (L(24)) on the thermotropic phase behavior of aqueous dispersions of 1,2-dielaidoylphosphatidylethanolamine (DEPE) to understand better the interactions between lipid bilayers and the membrane-spanning segments of integral membrane proteins. We studied in particular the effect of L(24) and three derivatives thereof on the liquid-crystalline lamellar (L(alpha))-reversed hexagonal (H(II)) phase transition of DEPE model membranes by differential scanning calorimetry and (31)P nuclear magnetic resonance spectroscopy. We found that the incorporation of L(24) progressively decreases the temperature, enthalpy, and cooperativity of the L(alpha)-H(II) phase transition, as well as induces the formation of an inverted cubic phase, indicating that this transmembrane peptide promotes the formation of inverted nonlamellar phases, despite the fact that the hydrophobic length of this peptide exceeds the hydrophobic thickness of the host lipid bilayer. These characteristic effects are not altered by truncation of the side chains of the terminal lysine residues or by replacing each of the leucine residues at the end of the polyleucine core of L(24) with a tryptophan residue. Thus, the characteristic effects of these transmembrane peptides on DEPE thermotropic phase behavior are independent of their detailed chemical structure. Importantly, significantly shortening the polyleucine core of L(24) results in a smaller decrease in the L(alpha)-H(II) phase transition temperature of the DEPE matrix into which it is incorporated, and reducing the thickness of the host phosphatidylethanolamine bilayer results in a larger reduction in the L(alpha)-H(II) phase transition temperature. These results are not those predicted by hydrophobic mismatch considerations or reported in previous studies of other transmembrane alpha-helical peptides containing a core of an alternating sequence of leucine and alanine residues. We thus conclude that the hydrophobicity and conformational flexibility of transmembrane peptides can affect their propensity to induce the formation of inverted nonlamellar phases by mechanisms not primarily dependent on lipid-peptide hydrophobic mismatch.  相似文献   

20.
The effect of propylgallate (PrG, an antioxidant) on the thermotropic behavior of dipalmitoylphosphatidylcholine (DPPC) was studied by means of differential scanning calorimetry. A DPPC/PrG mixture displayed distinctive thermotropic behavior that was significantly different from that of a DPPC/cholesterol or DPPC/vitamin E mixture. Although the enthalpy of the phase transition (delta H) for DPPC decreased at a low concentration of the PrG and the transition peak became broadened, delta H increased again and the peak became sharper on the addition of more PrG. The same was observed for DPPC/methylgallate and DPPC/ethylgallate mixtures, but not for a DPPC/butylgallate mixture. On the other hand, the transition temperature (Tm) of the DPPC/gallate derivative mixtures decreased with an increase in the chain length of the acyl moiety of the gallate derivatives. The pre-transition and subtransition of the DPPC/PrG mixture were eliminated on the addition of a PrG, and Tm of the DPPC/PrG mixture approached about 26 degrees C. These results suggested that the chain length of the acyl moiety must be C1 to C3 for the unique effect of the gallate derivatives described above, and that DPPC forms a complex with PrG as a pure component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号