首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Bacteriophage lambdahyp mutants have been isolated as survivors of Escherichia coli K-12 bacteria lysogenic for lambda Nam7am53cI857. The hyp mutants are characterized by (i) their localization in the y region very close to the imm lambda/imm434 boundary, (ii) polarity on O gene expression, (iii) immediate recovery of lambda immunity at 30 degrees C after prolonged growth of lambda Nam7am53cI857 hyp lysogens at 42 degrees C even in the presence of an active cro gene product, (iv) ability of phage lambda v2v3vs326 but not lambda v1v2v3 to propagate on lambda cI+hyp lysogens, (v) inability to express lambda exonuclease activity after prophage induction, and (vi) inviability at any temperature of phage carrying the hyp mutation. All these properties are referred to collectively as the Hyp phenotype. We show that the Hyp phenotype is due to cII-independent constitutive cI-gene-product synthesis originating in the y region, which results in the synthesis of anti-cro RNA species, and constitutive levels of cro gene product present even in lambda cI+hyp lysogens. A model is presented which is consistent with all the experimental observations.  相似文献   

5.
6.
We cloned the gene (c1) which encodes the repressor of vegetative function of Pseudomonas aeruginosa bacteriophage D3. The cloned gene was shown to inhibit plating of D3 and the induction of D3 lysogens by UV irradiation. The efficiency of plating and prophage induction of the heteroimmune P. aeruginosa phage F116L were not affected by the presence of the cloned c1 gene of D3. When the D3 DNA fragment containing c1 was subcloned into pBR322 and introduced into Escherichia coli, it was shown to specifically inhibit the plating of phage lambda and the induction of the lambda prophage by mitomycin C. The plating of lambda imm434 phage was not affected. Analysis in minicells indicated that these effects correspond to the presence of a plasmid-encoded protein of 36,000 molecular weight. These data suggest the possibility that coliphage lambda and the P. aeruginosa phage D3 evolved from a common ancestor. The conservation of the functional similarities of their repressors may have occurred because of the advantage to these temperate phages of capitalizing on the potential of the evolutionarily conserved RecA protein to monitor the level of damage to the host genome.  相似文献   

7.
J Lee  S M Weissman 《Gene》1992,120(1):85-88
A phage vector, lambda gt103, that has unique EcoRI, NotI, SacI and SpeI sites within the imm434 cI repressor gene, was constructed by PCR-aided site-directed mutagenesis of lambda gt10 [Huynh et al., DNA Cloning Techniques: A Practical Approach, 1985, pp. 49-78]. This vector allows directional cloning and retains positive selection for recombinants on Escherichia coli C600hfl strains (since only phages with disrupted cI genes plate on this host). Libraries made with this phage vector can be efficiently screened for clones in which a part of the insert is homologous to probe DNAs derived from a plasmid-based library, without cross-hybridization.  相似文献   

8.
9.
New mutations in the pRM promoter of bacteriophage lambda   总被引:1,自引:0,他引:1  
G N Gussin  S Brown  J Ferm  K Matz 《Gene》1987,54(2-3):291-297
  相似文献   

10.
A novel phage lambda mutation, called dc10, which interferes with proper lambda head assembly has been isolated and characterized. Phage lambda carrying this mutation is (i) unable to form plaques at 30 or 37 degrees C but does so at 42 degrees C and (ii) unable to form plaques at 42 degrees C on pN-constitutive hosts. Both properties are due to dc10 since all phage revertants for one phenotype simultaneously lose the other phenotype and vice versa. The dc10 mutation has been mapped in the B gene and has been shown to be dominant over the corresponding wild-type product. At 30 degrees C the dc10 mutation results in the formation of abnormal petit lambda heads made up of pE, pB, pC, and pNu3. Under pN-constitutive conditions, the dc10 mutation results in the formation of abnormal petit lambda heads made of pE, X1, and X2 only. A model to explain the data is presented.  相似文献   

11.
12.
Eight derivatives of recombinant plasmid pBRcro434, that consists of pBR322 and fragment of immunity region of phage lambda imm434 have been constructed and characterised. These derivatives contain the deletions in the region adjacent to OR3 operator and in the structural gene of cro-repressor of lambda imm434. The deletions have been produced by the treatment of pBRcro434 with exonuclease III of Escherichia coli and S1 nuclease of Aspergillus orizae and precisely mapped. The unique EcoRI-restriction sites have been reconstructed with the aim of using this deletion plasmids as a vectors for cloning.  相似文献   

13.
A tof-like protein that has 434-specific DNA binding activity has been copurified with the 434 tof protein from lambda imm434cI dv carrier cells. The apparent molecular weight of the new 434-specific DNA binding protein is 9,000 to 9,500, a little higher than that of the 434 tof protein, as estimated by SDS gel electrophoresis. Amino acid analysis revealed the protein to be an arginine-rich component whereas the 434 tof protein is a lysine-rich component. The specific binding reaction of the new protein to lambda imm434dv DNA is distinct from that of the 434 tof protein in respect to the sigmoid shape of the binding curve and to the temperature dependency. This suggests that the specific binding to lambda imm434dv DNA observed with the new protein is due not to a trace of the 434 tof protein contaminating the new protein preparation but rather to the new protein itself. The NH2-terminal 11 residues of the new 434-specific DNA binding protein were sequenced by manual Edman degradation. This technique revealed that the new protein is not a fragment of the 434 tof, cII, or O protein or an NH2-terminal fragment of the cI repressor. The origin and the physiological roles of the new 434-specific DNA binding protein remain unknown.  相似文献   

14.
15.
Cell lysis of Gram-negative bacteria can be efficiently achieved by expression of the cloned lysis gene E of bacteriophage PhiX174. Gene E expression is tightly controlled by the rightward lambda pR promoter and the temperature-sensitive repressor cI857 on lysis plasmid pAW12. The resulting empty bacterial cell envelopes, called bacterial ghosts, are currently under investigation as candidate vaccines. Expression of gene E is stringently repressed at temperatures up to 30 degrees C, whereas gene E expression, and thus cell lysis, is induced at temperatures higher than 30 degrees C due to thermal inactivation of the cI857 repressor. As a consequence, the production of ghosts requires that bacteria have to be grown at 28 degrees C before the lysis process is induced. In order to reflect the growth temperature of pathogenic bacteria in vivo, it seemed favorable to extend the heat stability of the lambda pR promoter/cI857 repressor system, allowing pathogens to grow at 37 degrees C before induction of lysis. In this study we describe a mutation in the lambda pR promoter, which allows stringent repression of gene E expression at temperatures up to 36 degrees C, but still permits induction of cell lysis at 42 degrees C.  相似文献   

16.
Bacteriophage lambda requires the lambda O and P proteins for its DNA replication. The rest of the replication proteins are provided by the Escherichia coli host. Some of these host proteins, such as DnaK, DnaJ, and GrpE, are heat shock proteins. Certain mutations in the dnaK, dnaJ, or grpE gene block lambda growth at all temperatures and E. coli growth above 43 degrees C. We have isolated bacterial mutants that were shown by Southern analysis to contain a defective, mini-Tn10 transposon inserted into either of two locations and in both orientations within the dnaJ gene. We have shown that these dnaJ-insertion mutants did not grow as well as the wild type at temperatures above 30 degrees C, although they blocked lambda DNA replication at all temperatures. The dnaJ-insertion mutants formed progressively smaller colonies at higher temperatures, up to 42 degrees C, and did not form colonies at 43 degrees C. The accumulation of frequent, uncharacterized suppressor mutations allowed these insertion mutants to grow better at all temperatures and to form colonies at 43 degrees C. None of these suppressor mutations restored the ability of the host to propagate phage lambda. Radioactive labeling of proteins synthesized in vivo followed by immunoprecipitation or immunoblotting with anti-DnaJ antibodies demonstrated that no DnaJ protein could be detected in these mutants. Labeling studies at different temperatures demonstrated that these dnaJ-insertion mutations resulted in altered kinetics of heat shock protein synthesis. An additional eight dnaJ mutant isolates, selected spontaneously on the basis of blocking phage lambda growth at 42 degrees C, were shown not to synthesize DnaJ protein as well. Three of these eight spontaneous mutants had gross DNA alterations in the dnaJ gene. Our data provide evidence that the DnaJ protein is not absolutely essential for E. coli growth at temperatures up to 42 degrees C under standard laboratory conditions but is essential for growth at 43 degrees C. However, the accumulation of extragenic suppressors is necessary for rapid bacterial growth at higher temperatures.  相似文献   

17.
18.
The maintenance of a plasmid vector-host system that selects for bacteria carrying the plasmid without the need for antibiotics is described. In this system, the bacteriophage 434 repressor gene cloned on the plasmid protects the host from lysis by a lambda imm434 cI- prophage. Cells that occasionally lose the plasmid are killed by prophage induction and therefore do not accumulate in the growing culture. The presence of the phage 434 repressor in the cells does not interfere with the process of lambda repressor inactivation and the high-level production of bovine growth hormone.  相似文献   

19.
The maintenance of a plasmid vector-host system that selects for bacteria carrying the plasmid without the need for antibiotics is described. In this system, the bacteriophage 434 repressor gene cloned on the plasmid protects the host from lysis by a lambda imm434 cI- prophage. Cells that occasionally lose the plasmid are killed by prophage induction and therefore do not accumulate in the growing culture. The presence of the phage 434 repressor in the cells does not interfere with the process of lambda repressor inactivation and the high-level production of bovine growth hormone.  相似文献   

20.
Digestion of phage lambda imm434 DNA with restriction endonuclease EcoRI yields 7 fragments. The shortest among them (1287 bp) contains the right part of the phage 434 immunity region and the phage DNA portion proximal to it. The complete primary structure of this fragment has been determined using the chemical method of DNA sequencing. Hypothetical amino-acid sequences of proteins coded by the cro gene of phage 434 and the cII gene of phage lambda, as well as NH2-terminal amino-acid sequences of the cI protein of phage 434 and the O protein of phage lambda, have been deduced solely on the basis of the DNA sequence. The fragment studied contains also the pR and probably prm promoters and the oR operator of phage 434. The sequence coding for them differs from the respective DNA sequence of phage lambda.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号