首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A sensitive and selective liquid chromatography-tandem spectrometry method for the determination of zolmitriptan was developed and validated over the linearity range 0.05-30 ng/ml with 0.5 ml of plasma using diphenhydramine as the internal standard. Liquid-liquid extraction using a mixture of diethyl ether and dichloromethane was used to extract the drug and the internal standard from plasma. The mass spectrometer was operated under the selected reaction monitoring (SRM) mode using the atmospheric pressure chemical ionization (APCI) technique. The instrument parameters were optimized to obtain 3.0 min run time. The mobile phase consisted of acetonitrile-water-formic acid (70:30:0.5), at a flow rate of 0.5 ml/min. In positive mode, zolmitriptan produced a protonated precursor ion at m/z 288 and a corresponding product ion at m/z 58. And internal standard produced a protonated precursor ion at m/z 256 and a corresponding product ion at m/z 167. The inter- and intra-day precision (%R.S.D.) were less than 8.5% and accuracy (%error) was less than -2.5%. The method had a lower limit of quantification of 0.05 ng/ml for zolmitriptan, which offered increased sensitivity and selectivity of analysis, compared with existing methods. The method was successfully applied to a pharmacokinetic study of zolmitriptan after an oral administration of 5 mg zolmitriptan to 20 healthy volunteers.  相似文献   

2.
A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of zolmitriptan in human plasma. After the addition of the internal standard (IS) and 1.0 M sodium hydroxide solution, plasma samples were extracted with methylene chloride:ethyl acetate mixture (20:80, v/v). The organic layer was evaporated under a stream of nitrogen at 40 degrees C. The residue was reconstituted with 100 microl mobile phase. The compounds were separated on a prepacked Lichrospher CN (5 microm, 150 mm x 2.0 mm) column using a mixture of methanol:water (10 mM NH(4)AC, pH 4.0) = 78:22 as mobile phase. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 0.30-16.0 ng/ml with a coefficient of determination (r) of 0.9998 and good back-calculated accuracy and precision. The intra- and inter-day precision (R.S.D.%) were lower than 15% and accuracy ranged from 85 to 115%. The lower limit of quantification was identifiable and reproducible at 0.30 ng/ml. The proposed method enables the unambiguous identification and quantification of zolmitriptan for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

3.
Venlafaxine, oxydesmethylvenlafaxine and an internal standard (paroxetine) were extracted from plasma by a solid-phase extraction technique. Chromatography was performed using isocratic reversed-phase high-performance liquid chromatography (HPLC) with coulometric endpoint detection. The standard curves were linear over the range 0–200 ng/ml for both venlafaxine and oxydesmethylvenlafaxine in plasma. The mean inter- and intra-assay coefficients of variation over the range of the standard curves were less than 10%. The absolute recovery averaged 74% for venlafaxine and 67% for oxydesmethylvenlafaxine. The sensitivity was 0.5 ng for both the analytes. Plasma profiles of the analytes following oral administration of venlafaxine, are presented.  相似文献   

4.
A simple and rapid method with high performance liquid chromatography/tandem mass spectrometry is described for the quantitation of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma. A protein precipitation extraction procedure was applied to 50 μL of plasma. Chromatographic separation of the two analytes, and the internal standard [2H313C]-sorafenib, was achieved on a C18 analytical column and isocratic flow at 0.3 mL/min for 4 min. Mean within-run and between-run precision for all analytes were <6.9% and accuracy was <5.3%. Calibration curves were linear over the concentration range of 50–10,000 ng/mL for sorafenib and 10–2500 ng/mL for sorafenib N-oxide. This method allows a specific, sensitive, and reliable determination of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma in a single analytical run.  相似文献   

5.
Zolmitriptan is a novel and highly selective 5-HT(1B/1D) receptor agonist used as an acute oral treatment for migraine. There are few reports regarding the in vitro metabolism of zolmitriptan. Previous studies indicated zolmitriptan was metabolized via CYP1A2 in human hepatic microsomes. In order to study the enzyme kinetics and drug interaction, the metabolism of zolmitriptan and possible drug-drug interactions were investigated in rat hepatic microsomes induced with different inducers. An active metabolite, N-demethylzolmitriptan, was detected and another minor, inactive metabolite that was reported in human hepatic microsomes was not detected in this study. The enzyme kinetics for the formation of N-demethylzolmitriptan from zolmitriptan in rat liver microsomes pretreated with BNF were 96+/-22 microM (K(m)), 11+/-3 pmol min(-1)mg protein(-1) (V(max)), and 0.12+/-0.02 microl min(-1)mg protein(-1) (CL(int)). Fluvoxamine and diphenytriazol inhibited zolmitriptan N-demethylase activity catalyzed by CYP1A2 (K(i)=3.8+/-0.3 and 3.2+/-0.1 microM, respectively). Diazepam and propranolol elicited a slight inhibitory effect on the metabolism of zolmitriptan (K(i)=70+/-11 and 90+/-18 microM, respectively). Cimetidine and moclobemide produced no significant effect on the metabolism of zolmitriptan. Fluvoxamine yielded a k(inactivation) value of 0.16 min(-1), and K(i) of 57 microM. The results suggest that rat hepatic microsomes are a reasonable model to study the metabolism of zolmitriptan, although there is a difference in the amount of minor, inactive metabolites between human hepatic microsomes and rat liver microsomes. The results of the inhibition experiments provided information for the interactions between zolmitriptan and drugs co-administrated in clinic, and it is helpful to explain the drug-drug interactions of clinical relevance on enzyme level. This study aso demonstrated that fluvoxamine may be a mechanism-based inactivator of CYP1A2.  相似文献   

6.
A high-performance liquid chromatographic (HPLC) procedure has been developed for the quantification of L-365,260 (I), a cholecystokinin and gastrin receptor antagonist, in dog and rat plasma. The method involves liquid—liquid extraction and HPLC with ultraviolet detection. Standard curves were linear over the range 7.5–2000 ng/ml for rat and dog plasma. The method is reproducible and reliable with a detection limit of 7.5 ng/ml in biological fluids. The mean coefficients of variation for concentrations within the range of the standard curve range were 3.84 and 2.56%, respectively, for intra-day analysis and 4.48 and 4.26%, respectively, for inter-day analysis. Application of the development was successfully demonstrated by quantifying the concentration of I in both dog and rat plasma samples following an intravenous or oral dose of 5 mg/kg I.  相似文献   

7.
Fluoxetine (FLX) and norfluoxetine (NFLX) racemic mixtures were determined by reversed-phase liquid chromatography with fluorescence detection (lambda(exc)=227 nm, lambda(em)=305 nm). The calibration curves prepared from drug-free plasma and brain were linear in the range of 5-1000 ng ml(-1) and 100-40,000 ng g(-1) for doped samples, with detection limits of 3.2 and 2.1 ng ml(-1) in plasma and 31.5 and 26.1 ng g(-1) in brain tissue for FLX and NFLX, respectively. Enantiomer determination was carried out through normal phase HPLC-FD (lambda(exc)=224 nm, lambda(em)=336 nm) after precolumn chiral derivatization with R-1-(1-naphthyl)ethyl isocyanate. Standard curves also prepared in a drug-free matrix were linear for each enantiomer over the range of 2-1000 ng ml(-1) and 20-7000 ng g(-1) with detection limits for the four compounds ranging between 0.2 and 0.5 ng ml(-1) in plasma and between 3.0 and 8.2 ng g(-1) in brain tissue. In both methods the analytes were isolated from the biological matrix by a new solid-phase extraction procedure with recovery in plasma and brain over 90 and 87%, respectively. The repeatability of this extraction procedure was satisfactory within-day and between-day with CV<9.1%. This study also offered the opportunity to obtain an assessment of the potential relationships between the concentration of individual enantiomers of FLX and NFLX in plasma and brain tissue after chronic treatment with racemic FLX at a dose intended to mimic the human plasma concentration of FLX in standard clinical conditions, and therefore should make for more reliable extrapolation of neurochemical findings in other species.  相似文献   

8.
A novel, highly sensitive method was developed for simultaneous determination of tramadol and its main active metabolite O-demethyltramadol (ODMT) in rat plasma. The method involves a single-step extraction procedure and a specific determination by high-performance liquid chromatography with electrochemical detection, using an ethoxy analogue of tramadol (L-233) as internal standard. The dual-electrode detector was operated in the oxidation-screening mode. Absolute recoveries of tramadol and ODMT were about 80%. Calibration curves were linear over a concentration range of 10–1000 ng/ml for ODMT and 10–10 000 ng/ml for tramadol with intra- and inter-day coefficients of variation not exceeding 10% and 15%, respectively. The limit of quantification for tramadol and ODMT was lower than 15 ng/ml and 10 ng/ml using 100 μl of plasma, respectively. The described method allows an adequate characterization of the plasma vs. time profiles for both compounds.  相似文献   

9.
We report the case of a patient with mild non-obstructive coronary artery disease who sustained an inferior wall myocardial infarction shortly after taking zolmitriptan as abortive therapy for migraine headaches. A Medline search was performed to review all reported cases of myocardial infarction related to migraine therapy with zolmitriptan and related medications. Zolmitriptan may cause myocardial infarction (MI) even in the absence of significant coronary artery disease.  相似文献   

10.
A rapid and sensitive LC-MS-MS method for the determination of huperzine A in dog plasma using huperzine B as internal standard has been developed and validated. The analyte and internal standard were extracted from plasma using n-hexane-dichloromethane-2-propanol (300:150:15, v/v/v), chromatographed on a C(18) column (5 microm, 50 mm x 4.6 mm i.d.) with a mobile phase consisting of acetonitrile-methanol-10mM ammonium acetate (35:40:25, v/v/v), and detected using a tandem mass spectrometer with a TurboIonSpray ionization interface. The run time was only 2 min. The assay was linear over the concentration range 0.05-20 ng/ml and intra- and inter-day precision over this range were <5.3% with good accuracy. The limit of detection in plasma was 0.01 ng/ml. The method was successfully applied to define plasma concentration-time curves of huperzine A in dogs after the last dose of an intramuscular injection (10 microg/kg per day for 15 days) of a sustained-release formulation of huperzine A.  相似文献   

11.
A sensitive stereoselective bioanalytical liquid chromatographic assay with mass spectrometric detection (LC-MS) was developed and validated for the on-line extraction and quantification of R- and S-methadone and the primary metabolite R- and S-2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) from human plasma. Deproteinized plasma was injected directly onto a small C8 column, washed and then back-flushed using a column switching valve and a second pump onto an alpha1-acid glycoprotein analytical column, and enantioselective separation achieved using a mobile phase gradient of methanol and ammonium formate. Analytes were validated over a range of 0.1-25 ng/ml R- and S-EDDP and 0.1-100ng/ml R- and S-methadone, respectively. Unweighted standard curves were linear over this concentration range (regression coefficients > 0.999). Quality control samples were evaluated at 1, 5, 12.5 ng/ml R- and S-EDDP and 1, 10, 50 ng/ml R- and S-methadone. Intra- and inter-day accuracy was >95%, and intra- and inter-day coefficients of variation were less than 10% for all analytes and concentrations. This assay represents the only method currently available which combines on-line extraction and achieves chiral separation of both methadone and EDDP from plasma, and offers improvements in sensitivity over existing methods.  相似文献   

12.
A method of field-amplified sample stacking in capillary electrophoresis is described for the simultaneous determination of clozapine (CZP) and its metabolites, clozapine N-oxide (CNO), and desmethylclozapine (DMC), in human plasma. Plasma (0.2 mL) was extracted with organic solvents (ethyl acetate/n-hexane/isopropyl alcohol, 8/1/1 by volume) and centrifuged. An aliquot of supernatant was evaporated and suitably reconstituted with water for CE analysis. An untreated fused-silica capillary was used (31.2 cm; effective length, 20 cm; 50 microm i.d.) for the analysis. The background buffer was phosphate buffer (400 mM, pH 3.0) containing 50% ethylene glycol. The separation voltage was 25 kV with a detection wavelength of 214 nm. In the method validation, the calibration curves were linear (r > or = 0.98) over a range of 50-800 ng/mL for CZP, 30-180 ng/mL for CNO, and 25-600 ng/mL for DMC. The relative standard deviation (R.S.D.) and relative error (R.E.) were all less than 11% for the intra- and inter-day assays. The limits of detection (S/N = 3, electric-driven injection, 99.9s) of CZP, DMC, and CNO were 5, 5, and 10 ng/mL, respectively. After continuing treatment with the CZP tablets, a blood sample from one male schizophrenic patient (41-year-old, 62 kg) who had been receiving ongoing treatment with the CZP tablets was prepared and analyzed. The levels of CZP, DMC, and CNO were determined and the feasibility of the method's application in clinical treatment was proven.  相似文献   

13.
A simple high-performance liquid chromatography (HPLC)-tandem mass spectrometric method has been developed for determination of propiverine hydrochloride and its metabolite, propiverine N-oxide (M-1) in human plasma using stable isotopes, propiverine hydrochloride-d10 and M-1-d10, as internal standards. The analytes were extracted with dichloromethane from 0.2 ml of plasma in neutral condition (pH 7.0) and separated by HPLC on a C18 reversed-phase column using methanol-1% acetic acid (50:50) as a mobile phase, and detected using positive electrospray ionization in selected reaction monitoring (SRM) mode. The method was validated over a concentration range of 2-500 ng/ml for propiverine hydrochloride and 4-1000 ng/ml for M-1 using 0.2 ml of human plasma per assay. The method developed was successfully applied to analysis of propiverine hydrochloride and M-1 in clinical studies.  相似文献   

14.
A simple, selective and sensitive isocratic HPLC method with triple quadrupole mass spectrometry detection has been developed and validated for simultaneous quantification of zopiclone and its metabolites in human plasma. The analytes were extracted using solid phase extraction, separated on Symmetry shield RP8 column (150 mm x 4.6 mm i.d., 3.5 microm particle size) and detected by tandem mass spectrometry with a turbo ion spray interface. Metaxalone was used as an internal standard. The method had a chromatographic run time of 4.5 min and linear calibration curves over the concentration range of 0.5-150 ng/mL for both zopiclone and N-desmethyl zopiclone and 1-150 ng/mL for zopiclone-N-oxide. The intra-batch and inter-batch accuracy and precision evaluated at lower limit of quantification and quality control levels were within 89.5-109.1% and 3.0-14.7%, respectively, for all the analytes. The recoveries calculated for the analytes and internal standard were > or = 90% from spiked plasma samples. The validated method was successfully employed for a comparative bioavailability study after oral administration of 7.5 mg zopiclone (test and reference) to 16 healthy volunteers under fasted condition.  相似文献   

15.
Phenethyl isothiocyanate is unstable in aqueous media and at low pH, and rapidly degrades to phenethylamine. Concentrations of phenethylamine, a phenethyl isothiocyanate marker, in dog plasma, were determined utilizing solid-phase extraction and gas chromatography–mass spectrometry with chemical ionization using acetone as the reagent gas. Deuterated d5-amphetamine was used as an internal standard. After extraction, phenethylamine and d5-amphetamine were derivatized using MBHFBA. Ions monitored for d5-amphetamine were m/z 337 and 338; and for phenethylamine were m/z 318 and 319. Precision and accuracy were studied using control solutions prepared in naive dog plasma (80 and 300 ng/ml). Intra-day variability was determined using six replicates of each control solution analyzed on a single day. The relative standard deviation for the 80 ng/ml control was 12.9% and for the 300 ng/ml it was 12.1%. Relative accuracy was 10.9% for the low control and −4.1% for the high control. Inter-day variability was determined over a 6-day period. For the 80 and 300 ng/ml control solutions, the relative standard deviations were 15.8 and 9.1%, respectively, and relative accuracy values were 10.1 and −5.2%, respectively. Standard curves were prepared in naive dog plasma and were linear over the range of phenethylamine assayed (10–500 ng/ml). The results of this study indicate that the proposed method is simple, precise, accurate and sensitive enough for analysis of large numbers of plasma samples.  相似文献   

16.
A high-performance thin-layer chromatographic (HPTLC) method for quantitation of ibuprofen from plasma is described. The drug was extracted from acidified plasma with hexane-isopropanol (85:15). The mobile phase composition was n-hexane-ethyl acetate-anhydrous acetic acid (75:25:2). Densitometric analysis of ibuprofen was carried out at 222 nm. The calibration curves of ibuprofen in chloroform and in plasma were linear over the range 2–20 μg. The mean values of intercept, slope and correlation coefficient were 0.0422±0.0018, 0.0356±0.0213 and 0.9976±0.0013 for standard curves in chloroform and 0.1044±0.003, 0.8759±0.0213 and 0.9939±0.001 for standard curves in plasma, respectively. The limit of detection of ibuprofen from human plasma (assay sensitivity) was 50 ng and no interference was found from endogenous compounds. The recovery of ibuprofen from human plasma using the described extraction procedure was about 85%. The mean relative standard deviations for within-day and between-day analyses were 2.24 and 2.6% for 5 μg and 3.67 and 3.2% for 15μg ibuprofen concentration, respectively. The method was utilized to monitor the plasma concentration of ibuprofen post administration of sustained release capsules in human patient volunteers.  相似文献   

17.
A high-performance thin-layer chromatographic (HPTLC) method for the assay of flurbiprofen in plasma is reported. The drug was extracted from acidified plasma with hexane–diethyl ether (80:20). The mobile phase composition was n-hexane–ethyl acetate–glacial acetic acid (60:30:10). Densitometric analysis of flurbiprofen was carried out at 247 nm. The calibration curves of flurbiprofen in methanol and in plasma were linear in the range 40–400 ng. The mean values of correlation coefficient, slope and intercept were 0.995±0.003, 0.075±0.002 and 4.39±0.05 for standard curves in methanol and 0.992±0.002, 0.066±0.007 and 3.40±0.72 for standard curves in plasma, respectively. The limit of quantitation for flurbiprofen in human plasma was 40 ng, and no interference was found from endogenous compounds. The recovery of flurbiprofen from human plasma using the described extraction procedure was about 87%. The coefficient of variation for within-day and between-day analyses was 2.53% and 3.96% for 200 ng and 1.76% and 2.30% for 400 ng flurbiprofen concentration, respectively. The method was utilized to monitor plasma concentration of flurbiprofen post administration of sustained release capsules in human patient volunteers.  相似文献   

18.
Sumatriptan succinate (the analyte) and naloxone (the internal standard) were extracted from plasma with a solid-phase extraction technique. Chromatography and detection were performed by isocratic reversed-phase high-performance liquid chromatography with coulometric end-point detection. The standard curve was linear over the range 0–100 ng/ml of sumatriptan succinate in plasma. The reproducibility (as defined by the coefficient of variation, C.V.) over the range of the standard curve was 4.9–7.3%. The recovery averaged 83%. The sensitivity was 0.25 ng of sumatriptan on column (allowing a concentration of 0.5 ng/ml to be determined from a 1-ml plasma sample volume). Plasma profiles of the analyte following subcutaneous (s.c.) administration in eight normal male volunteers, are presented.  相似文献   

19.
This study presents a high-performance liquid chromatography-positive/negative electrospray ionization tandem mass spectrometric (LC-ESI(+/-)-MS-MS) method for the determination of betamethasone (BOH) and betamethasone 17-monopropionate (B17P) in human plasma using beclomethasone dipropionate as the internal standard (I.S.). Both compounds were extracted from human plasma with ether-cyclohexane (4:1, v/v) and were separated by HPLC on a Hanbon Lichrospher C(18) column with a mobile phase of methanol-water (85:15, v/v) at a flow rate of 0.7ml/min. Calibration curves were linear over the range of 0.10-50ng/ml for BOH and 0.050-50ng/ml for B17P. The inter-run relative standard deviations were less than 14.4% for BOH and 12.3% for B17P. The intra-run relative standard deviations were less than 9.3% for BOH and 7.9% for B17P. The mean plasma extraction recovery for BOH and B17P were in the ranges of 82.7-85.9% and 83.6-85.3%, respectively. The method was successfully applied to study the pharmacokinetics of a new formulation of betamethasone phosphate/betamethasone dipropionate injection in healthy Chinese volunteers.  相似文献   

20.
Two methods for the extraction of morphine from cerebrospinal fluid or plasma with quantitation by high-performance liquid chromatography with electrochemical detection were compared for accuracy, precision and ease of preparation. One procedure was a standard extraction procedure and the other utilized a commercially available liquid—liquid extraction column. Both methods produced linear calibration curves over the concentration range of 1–200 ng/ml with coefficients of correlation of 0.999. Since the electrochemical detector is capable of detecting 20 pg of morphine, biological samples as small as 0.1 to 0.4 ml can be quantified with an average relative precision of 4.1 ± 3.9% over the concentration range 1–200 ng/ml. The potential clinical importance of the assay is demonstrated using a time course distribution study of morphine in the cerebrospinal fluid and plasma of a Rhesus monkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号