首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Synonymous and nonsynonymous rate variation in nuclear genes of mammals   总被引:34,自引:6,他引:28  
A maximum likelihood approach was used to estimate the synonymous and nonsynonymous substitution rates in 48 nuclear genes from primates, artiodactyls, and rodents. A codon-substitution model was assumed, which accounts for the genetic code structure, transition/transversion bias, and base frequency biases at codon positions. Likelihood ratio tests were applied to test the constancy of nonsynonymous to synonymous rate ratios among branches (evolutionary lineages). It is found that at 22 of the 48 nuclear loci examined, the nonsynonymous/synonymous rate ratio varies significantly across branches of the tree. The result provides strong evidence against a strictly neutral model of molecular evolution. Our likelihood estimates of synonymous and nonsynonymous rates differ considerably from previous results obtained from approximate pairwise sequence comparisons. The differences between the methods are explored by detailed analyses of data from several genes. Transition/transversion rate bias and codon frequency biases are found to have significant effects on the estimation of synonymous and nonsynonymous rates, and approximate methods do not adequately account for those factors. The likelihood approach is preferable, even for pairwise sequence comparison, because more-realistic models about the mutation and substitution processes can be incorporated in the analysis. Received: 17 May 1997 / Accepted: 28 September 1997  相似文献   

2.
Nucleotide Substitution Rate of Mammalian Mitochondrial Genomes   总被引:22,自引:0,他引:22  
We present here for the first time a comprehensive study based on the analysis of closely related organisms to provide an accurate determination of the nucleotide substitution rate in mammalian mitochondrial genomes. This study examines the evolutionary pattern of the different functional mtDNA regions as accurately as possible on the grounds of available data, revealing some important ``genomic laws.' The main conclusions can be summarized as follows. (1) High intragenomic variability in the evolutionary dynamic of mtDNA was found. The substitution rate is strongly dependent on the region considered, and slow- and fast-evolving regions can be identified. Nonsynonymous sites, the D-loop central domain, and tRNA and rRNA genes evolve much more slowly than synonymous sites and the two peripheral D-loop region domains. The synonymous rate is fairly uniform over the genome, whereas the rate of nonsynonymous sites depends on functional constraints and therefore differs considerably between genes. (2) The commonly accepted statement that mtDNA evolves more rapidly than nuclear DNA is valid only for some regions, thus it should be referred to specific mitochondrial components. In particular, nonsynonymous sites show comparable rates in mitochondrial and nuclear genes; synonymous sites and small rRNA evolve about 20 times more rapidly and tRNAs about 100 times more rapidly in mitochondria than in their nuclear counterpart. (3) A species-specific evolution is particularly evident in the D-loop region. As the divergence times of the organism pairs under consideration are known with sufficient accuracy, absolute nucleotide substitution rates are also provided. Received: 11 May 1998 / Accepted: 2 September 1998  相似文献   

3.
Previous investigations indicated that synonymous and nonsynonymous substitution rates are correlated in mammalian genes. In the present work, this correlation has been studied at the intragenic level using a dataset of 48 orthologous genes from species belonging to at least four different mammalian orders. The results obtained show that the intragenic variability in synonymous rates is correlated with that of nonsynonymous rates. Moreover, the variation in GC level (and especially of C level) of silent positions along each gene is correlated with the variation in synonymous rate. These results reinforce the previous conclusions that synonymous and nonsynonymous rates as well as GC levels of silent positions are to some extent under common selective constraints. Received: 10 July 1997 / Accepted: 13 August 1997  相似文献   

4.
Phylogenetic relationships among reptiles were examined using previously published and newly determined hemoglobin sequences. Trees reconstructed from these sequences using maximum-parsimony, neighbor-joining, and maximum-likelihood algorithms were compared with a phylogenetic tree of Amniota, which was assembled on the basis of published morphological data. All analyses differentiated α chains into αA and αD types, which are present in all reptiles except crocodiles, where only αA chains are expressed. The occurrence of the αD chain in squamates (lizards and snakes only in this study) appears to be a general characteristic of these species. Lizards and snakes also express two types of β chains (βI and βII), while only one type of β chain is present in birds and crocodiles. Reconstructed hemoglobin trees for both α and β sequences did not yield the monophyletic Archosauria (i.e., crocodilians + birds) and Lepidosauria (i.e., Sphenodon+ squamates) groups defined by the morphology tree. This discrepancy, as well as some other poorly resolved nodes, might be due to substantial heterogeneity in evolutionary rates among single hemoglobin lineages. Estimation of branch lengths based on uncorrected amino acid substitutions and on distances corrected for multiple substitutions (PAM distances) revealed that relative rates for squamate αA and αD chains and crocodilian β chains are at least twice as high as those of the rest of the chains considered. In contrast to these rate inequalities between reptilian orders, little variation was found within squamates, which allowed determination of absolute evolutionary rates for this subset of hemoglobins. Rate estimates for hemoglobins of lizards and snakes yielded 1.7 (αA) and 3.3 (β) million years/PAM when calibrated with published divergence time vs. PAM distance correlates for several speciation events within snakes and for the squamate ↔ sphenodontid split. This suggests that hemoglobin chains of squamate reptiles evolved ∼3.5 (αA) or ∼1.7 times (β) faster than their mammalian equivalents. These data also were used to obtain a first estimate of some intrasquamate divergence times. Received: 15 September 1997 / Accepted: 4 February 1998  相似文献   

5.
Synonymous substitution rates in mitochondrial and nuclear genes of Drosophila were compared. To make accurate comparisons, we considered the following: (1) relative synonymous rates, which do not require divergence time estimates, should be used; (2) methods estimating divergence should take into account base composition; (3) only very closely related species should be used to avoid effects of saturation; (4) the heterogeneity of rates should be examined. We modified the methods estimating synonymous substitution numbers to account for base composition bias. By using these methods, we found that mitochondrial genes have 1.7–3.4 times higher synonymous substitution rates than the fastest nuclear genes or 4.5–9.0 times higher rates than the average nuclear genes. The average rate of synonymous transversions was 2.7 (estimated from the melanogaster species subgroup) or 2.9 (estimated from the obscura group) times higher in mitochondrial genes than in nuclear genes. Synonymous transversions in mitochondrial genes occurred at an approximately equivalent rate to those in the fastest nuclear genes. This last result is not consistent with the hypothesis that the difference in turnover rates between mitochondrial and nuclear genomes is the major factor determining higher synonymous substitution rates in mtDNA. We conclude that the difference in synonymous substitution rates is due to a combination of two factors: a higher transitional mutation rate in mtDNA and constraints on nuclear genes due to selection for codon usage. Received: 27 November 1996 / Accepted: 8 May 1997  相似文献   

6.
Rates of synonymous and nonsynonymous nucleotide substitutions and codon usage bias (ENC) were estimated for a number of nuclear and chloroplast genes in a sample of centric and pennate diatoms. The results suggest that DNA evolution has taken place, on an average, at a slower rate in the chloroplast genes than in the nuclear genes: a rate variation pattern similar to that observed in land plants. Synonymous substitution rates in the chloroplast genes show a negative association with the degree of codon usage bias, suggesting that genes with a higher degree of codon usage bias have evolved at a slower rate. While this relationship has been shown in both prokaryotes and multicellular eukaryotes, it has not been demonstrated before in diatoms. Received: 3 June 1998 / Accepted: 11 August 1998  相似文献   

7.
The polyubiquitin gene, encoding tandemly repeated multiple ubiquitins, constitutes a uniquitin gene subfamily. It has been demonstrated that polyubiquitin genes are subject to concerted evolution; namely, the individual ubiquitin coding units contained within a polyubiquitin gene are more similar to one another than they are to the ubiquitin coding units in the orthologous gene from other species. However there has been no comprehensive study on the concerted evolution of polyubiquitin genes in a wide range of species, because the relationships (orthologous or paralogous) among multiple polyubiquitin genes from different species have not been extensively analyzed yet. In this report, we present the results of analyzing the nucleotide sequence of polyubiquitin genes of mammals, available in the DDBJ/EMBL/GenBank nucleotide sequence databases, in which we found that there are two groups of polyubiquitin genes in an orthologous relationship. Based on this result, we analyzed the concerted evolution of the polyubiquitin gene in various species and compared the frequency of concerted evolutionary events interspecifically by taking into consideration that the rate of synonymous substitution at the polyubiquitin gene locus may vary depending on species. We found that the concerted evolutionary events in polyubiquitin genes have been more frequent in rats and Chinese hamsters than those in humans, cows, and sheep. The guinea pig polyubiquitin gene was an intermediate example. The frequency of concerted evolution in the mouse gene was unexpectedly low compared to that of other rodent genes. Received: 18 January 2000 / Accepted: 26 April 2000  相似文献   

8.
In this work, we have investigated the relationships between synonymous and nonsynonymous rates and base composition in coding sequences from Gramineae to analyze the factors underlying the variation in substitutional rates. We have shown that in these genes the rates of nucleotide divergence, both synonymous and nonsynonymous, are, to some extent, dependent on each other and on the base composition. In the first place, the variation in nonsynonymous rate is related to the GC level at the second codon position (the higher the GC2 level, the higher the amino acid replacement rate). The correlation is especially strong with T2, the coefficients being significant in the three data sets analyzed. This correlation between nonsynonymous rate and base composition at the second codon position is also detectable at the intragenic level, which implies that the factors that tend to increase the intergenic variance in nonsynonymous rates also affect the intragenic variance. On the other hand, we have shown that the synonymous rate is strongly correlated with the GC3 level. This correlation is observed both across genes and at the intragenic level. Similarly, the nonsynonymous rate is also affected at the intragenic level by GC3 level, like the silent rate. In fact, synonymous and nonsynonymous rates exhibit a parallel behavior in relation to GC3 level, indicating that the intragenic patterns of both silent and amino acid divergence rates are influenced in a similar way by the intragenic variation of GC3. This result, taken together with the fact that the number of genes displaying intragenic correlation coefficients between synonymous and nonsynonymous rates is not very high, but higher than random expectation (in the three data sets analyzed), strongly suggests that the processes of silent and amino acid replacement divergence are, at least in part, driven by common evolutionary forces in genes from Gramineae. Received: 2 July 1998 / Accepted: 18 April 1999  相似文献   

9.
Cytochrome c oxidase (COX) is a multi-subunit enzyme complex that catalyzes the final step of electron transfer through the respiratory chain on the mitochondrial inner membrane. Up to 13 subunits encoded by both the mitochondrial (subunits I, II, and III) and nuclear genomes occur in eukaryotic organisms ranging from yeast to human. Previously, we observed a high number of amino acid replacements in the human COX IV subunit compared to mouse, rat, and cow orthologues. Here we examined COX IV evolution in the two groups of anthropoid primates, the catarrhines (hominoids, cercopithecoids) and platyrrhines (ceboids), as well as one prosimian primate (lorisiform), by sequencing PCR-amplified portions of functional COX4 genes from genomic DNAs. Phylogenetic analysis of the COX4 sequence data revealed that accelerated nonsynonymous substitution rates were evident in the early evolution of both catarrhines and, to a lesser extent, platyrrhines. These accelerated rates were followed later by decelerated rates, suggesting that positive selection for adaptive amino acid replacement became purifying selection, preserving replacements that had occurred. The evidence for positive selection was especially pronounced along the catarrhine lineage to hominoids in which the nonsynonymous rate was first faster than the synonymous rate, then later much slower. The rates of three types of ``neutral DNA' nucleotide substitutions (synonymous substitutions, pseudogene nucleotide substitutions, and intron nucleotide substitutions) are similar and are consistent with previous observations of a slower rate of such substitutions in the nuclear genomes of hominoids than in the nuclear genomes of other primate and mammalian lineages. Received: 22 May 1996 / Accepted: 24 November 1996  相似文献   

10.
Molecular evolution of nitrate reductase genes   总被引:9,自引:0,他引:9  
To understand the evolutionary mechanisms and relationships of nitrate reductases (NRs), the nucleotide sequences encoding 19 nitrate reductase (NR) genes from 16 species of fungi, algae, and higher plants were analyzed. The NR genes examined show substantial sequence similarity, particularly within functional domains, and large variations in GC content at the third codon position and intron number. The intron positions were different between the fungi and plants, but conserved within these groups. The overall and nonsynonymous substitution rates among fungi, algae, and higher plants were estimated to be 4.33 × 10−10 and 3.29 × 10−10 substitutions per site per year. The three functional domains of NR genes evolved at about one-third of the rate of the N-terminal and the two hinge regions connecting the functional domains. Relative rate tests suggested that the nonsynonymous substitution rates were constant among different lineages, while the overall nucleotide substitution rates varied between some lineages. The phylogenetic trees based on NR genes correspond well with the phylogeny of the organisms determined from systematics and other molecular studies. Based on the nonsynonymous substitution rate, the divergence time of monocots and dicots was estimated to be about 340 Myr when the fungi–plant or algae–higher plant divergence times were used as reference points and 191 Myr when the rice–barley divergence time was used as a reference point. These two estimates are consistent with other estimates of divergence times based on these reference points. The lack of consistency between these two values appears to be due to the uncertainty of the reference times. Received: 10 April 1995 / Accepted: 10 September 1995  相似文献   

11.
Analysis of DNA sequences of 132 introns and 140 exons from 42 pairs of orthologous genes of mouse and rat was used to compare patterns of evolutionary change between introns and exons. The mean of the absolute difference in length (measured in base pairs) between the two species was nearly five times as high in the case of introns as in the case of exons. The average rate of nucleotide substitution in introns was very similar to the rate of synonymous substitution in exons, and both were about three times the rate of substitution at nonsynonymous sites in exons. G+C content of introns and exons of the same gene were correlated; but mean G+C content at the third positions of exons was significantly higher than that of introns or positions 1–2 of exons from the same gene. G+C content was conserved over evolutionary time, as indicated by strong correlations between mouse and rat; but the change in G+C content was greatest at position 3 of exons, intermediate in introns, and lowest at positions 1–2 in introns. Received: 23 December 1996 / Accepted: 1 April 1997  相似文献   

12.
To understand the process and mechanism of protein evolution, it is important to know what types of amino acid substitutions are more likely to be under selection and what types are mostly neutral. An amino acid substitution can be classified as either conservative or radical, depending on whether it involves a change in a certain physicochemical property of the amino acid. Assuming Kimura's two-parameter model of nucleotide substitution, I present a method for computing the numbers of conservative and radical nonsynonymous (amino acid altering) nucleotide substitutions per site and estimate these rates for 47 nuclear genes from mammals. The results are as follows. (1) The average radical/conservative rate ratio is 0.81 for charge changes, 0.85 for polarity changes, and 0.49 when both polarity and volume changes are considered. (2) The radical/conservative rate ratio is positively correlated with the nonsynonymous/synonymous rate ratio for charge changes or when both polarity and volume changes are considered. (3) Both the conservative/synonymous rate ratio and the radical/synonymous rate ratio are lower in the rodent lineage than in the primate or artiodactyl lineage, suggesting more intense purifying selection in the rodent lineage, for both conservative and radical nonsynonymous substitutions. (4) Neglecting transition/transversion bias would cause an underestimation of both radical and conservative rates and the ratio thereof. (5) Transversions induce more dramatic genetic alternations than transitions in that transversions produce more amino acid altering changes and among which, more radical changes. Received: 6 April 1999 / Accepted: 16 August 1999  相似文献   

13.
The two eosinophil ribonucleases, eosinophil-derived neurotoxin (EDN/RNase 2) and eosinophil cationic protein (ECP/RNase 3), are among the most rapidly evolving coding sequences known among primates. The eight mouse genes identified as orthologs of EDN and ECP form a highly divergent, species-limited cluster. We present here the rat ribonuclease cluster, a group of eight distinct ribonuclease A superfamily genes that are more closely related to one another than they are to their murine counterparts. The existence of independent gene clusters suggests that numerous duplications and diversification events have occurred at these loci recently, sometime after the divergence of these two rodent species (∼10–15 million years ago). Nonsynonymous substitutions per site (d N) calculated for the 64 mouse/rat gene pairs indicate that these ribonucleases are incorporating nonsilent mutations at accelerated rates, and comparisons of nonsynonymous to synonymous substitution (d N / d S) suggest that diversity in the mouse ribonuclease cluster is promoted by positive (Darwinian) selection. Although the pressures promoting similar but clearly independent styles of rapid diversification among these primate and rodent genes remain uncertain, our recent findings regarding the function of human EDN suggest a role for these ribonucleases in antiviral host defense. Received: 8 April 1999 / Accepted: 22 June 1999  相似文献   

14.
We present an analysis of the evolutionary rates of the cytochrome c oxidase subunit I genes of primates and other mammals. Five primate genes were sequenced, and this information was combined with published data from other species. The sequences from simian primates show approximately twofold increases in their nonsynonymous substitution rate compared to those from other primates and other mammals. The species range and the overall magnitude of this rate increase are similar to those previously identified for the cytochrome c oxidase subunit II and cytochrome b genes. Received: 22 July 1999 / Accepted: 21 February 2000  相似文献   

15.
The VP1 capsid protein of foot and mouth disease virus (FMDV) is highly polymorphic and contains several of the major immunogenic sites important to effective antibody neutralization and subsequent viral clearance by the immune system. Whether this high level of polymorphism is of adaptive value to the virus remains unknown. In this study we examined sequence data from a set of 55 isolates in order to establish the nature of selective pressures acting on this gene. Using the known molecular structure of VP1, the rates and ratios of different types of nonsynonymous and synonymous changes were compared between different parts of the protein. All parts of the protein are subject to purifying selection, but this is greatest amongst those amino acid residues within β-strands and is significantly reduced at residues exposed on the capsid surface, which include those residues demonstrated by previous mutational analyses to permit the virus to escape from monoclonal antibody binding. The ratios of nonsynonymous substitution resulting in various forms of physicochemically radical and conserved amino acid change were shown to be largely equal throughout these different parts of the protein. There was a consistently higher level of nonsynonymous and charge radical sites in those regions of the gene coding for residues exposed on the outer surface of the capsid and a marked difference in the use of amino acids between surface and nonsurface regions of the protein. However, the analysis is consistent with the hypothesis that the observed sequence variation arises where it is least likely to be disruptive to the higher-order structure of the protein and is not necessarily due to positive Darwinian selection. Received: 8 March 1997 / Accepted: 12 August 1997  相似文献   

16.
17.
Fast Evolution of Interleukin-2 in Mammals and Positive Selection in Ruminants   总被引:16,自引:0,他引:16  
Interleukin-2 (IL-2) is a cytokine involved in induction and regulation of the immune response in mammals. There have been numerous reports about the search for IL-2 in species other than mammals, and recently an IL-2-like gene has been isolated in chicken. Using PCR, we searched for IL-2 gene sequences in a wide variety of mammals, including marsupials and monotremes, as well as in birds. Although we can readily amplify IL-2 gene fragments in placental mammals, no amplification was obtained in other species. This is best explained by very high substitution rates. This suggest that strategies to isolate IL-2 homologous genes outside mammals should involve functional assays, as for the chicken gene, and not hybridization-based techniques. Nonsynonymous substitution rates are especially high in ruminants, due to positive selection acting on regions important in term of structure-function. We suggest that, although globally similar, the immune response of various mammals is not identical, mainly at the level of cytokine-mediated regulations. Received: 27 July 1999 / Accepted: 15 April 2000  相似文献   

18.
It has been observed that synonymous substitution rates vary among genes in various organisms, although the cause of the variation is unresolved. At the intragenic level, however, the variation of synonymous substitutions is somewhat controversial. By developing a rigorous statistical test and applying the test to 418 homologous gene pairs between mouse and rat, we found that more than 90% of gene pairs showed a statistical significance in intragenic variation of synonymous substitution rates. Moreover, by examining all conceivable possibilities for the cause of the variation, we successfully found that intragenic variation of synonymous substitutions in mammalian genes is caused mainly by a nonrandom mutation due to the methylation of CpG dinucleotides rather than by functional constraints. Received: 12 January 2001 / Accepted: 28 February 2001  相似文献   

19.
Allometric relationships linking species characteristics to body size or mass (scaling) are important in biology. However, studies on the scaling of life history traits in the reptiles (the nonavian Reptilia) are rather scarce, especially for the clades Crocodilia, Testudines, and Rhynchocephalia (single extant species, the tuatara). Previous studies on the scaling of reptilian life history traits indicated that they differ from those seen in the other amniotes (mammals and birds), but so far most comparative studies used small species samples and also not phylogenetically informed analyses. Here, we analyzed the scaling of nine life history traits with adult body mass for crocodiles (= 22), squamates (= 294), turtles (= 52), and reptiles (= 369). We used for the first time a phylogenetically informed approach for crocodiles, turtles, and the whole group of reptiles. We explored differences in scaling relationships between the reptilian clades Crocodilia, Squamata, and Testudines as well as differences between reptiles, mammals, and birds. Finally, we applied our scaling relationships, in order to gain new insights into the degree of the exceptionality of the tuatara's life history within reptiles. We observed for none of the life history traits studied any difference in their scaling with body mass between squamates, crocodiles, and turtles, except for clutch size and egg weight showing small differences between these groups. Compared to birds and mammals, scaling relationships of reptiles were similar for time‐related traits, but they differed for reproductive traits. The tuatara's life history is more similar to that of a similar‐sized turtle or crocodile than to a squamate.  相似文献   

20.
The very high AT content of hymenopteran mtDNA has warranted speculation about nucleotide substitution processes in this group. Here we investigate the pattern of honeybee, Apis mellifera, mtDNA nucleotide polymorphisms inferred from phylogeny in terms of differences between the ATPase6, COI, COII, COIII, cytochrome b, and ND2 genes and strand asymmetry in mutation rates. The observed transition/transversion ratios and the distribution of nonsynonymous substitutions between regions differed significantly. The pattern of differences between genes leading to these heterogeneities (the ATPase6 and COIII genes group apart from the rest) differed markedly from that predicted on the basis of long-term evolutionary change and may indicate differences between current and long-term dynamics of sequence evolution. Also, there is strong strand asymmetry in substitutions, which probably results in a mutability of G and C sufficiently high to account for the AT-richness of honeybee mtDNA. Received: 21 October 1998 / Accepted: 27 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号