首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emerging evidence suggests that plasma membrane calcium ATPases (PMCAs) play a key role as regulators of calcium-triggered signal transduction pathways via interaction with partner proteins. PMCAs regulate these pathways by targeting specific proteins to cellular sub-domains where the levels of intracellular free calcium are kept low by the calcium ejection properties of PMCAs. According to this model, PMCAs have been shown to interact functionally with the calcium-sensitive proteins neuronal nitric oxide synthase, calmodulin-dependent serine protein kinase, calcineurin and endothelial nitric oxidase synthase. Transgenic animals with altered expression of PMCAs are being used to evaluate the physiological significance of these interactions. To date, PMCA interactions with calcium-dependent partner proteins have been demonstrated to play a crucial role in the pathophysiology of the cardiovascular system via regulation of the nitric oxide and calcineurin/nuclear factor of activated T cells pathways. This new evidence suggests that PMCAs play a more sophisticated role than the mere ejection of calcium from the cells, by acting as modulators of signaling transduction pathways.  相似文献   

2.
3.
Plasma membrane calmodulin-dependent calcium ATPases (PMCAs) are enzymatic systems implicated in the extrusion of calcium from the cell. We and others have previously identified molecular interactions between the cytoplasmic COOH-terminal end of PMCA and PDZ domain-containing proteins. These interactions suggested a new role for PMCA as a modulator of signal transduction pathways. The existence of other intracellular regions in the PMCA molecule prompted us to investigate the possible participation of other domains in interactions with different partner proteins. A two-hybrid screen of a human fetal heart cDNA library, using the region 652-840 of human PMCA4b (located in the catalytic, second intracellular loop) as bait, revealed a novel interaction between PMCA4b and the tumor suppressor RASSF1, a Ras effector protein involved in H-Ras-mediated apoptosis. Immunofluorescence co-localization, immunoprecipitation, and glutathione S-transferase pull-down experiments performed in mammalian cells provided further confirmation of the physical interaction between the two proteins. The interaction domain has been narrowed down to region 74-123 of RASSF1C (144-193 in RASSF1A) and 652-748 of human PMCA4b. The functionality of this interaction was demonstrated by the inhibition of the epidermal growth factor-dependent activation of the Erk pathway when PMCA4b and RASSF1 were co-expressed. This inhibition was abolished by blocking PMCA/RASSSF1 association with an excess of a green fluorescent protein fusion protein containing the region 50-123 of RASSF1C. This work describes a novel protein-protein interaction involving a domain of PMCA other than the COOH terminus. It suggests a function for PMCA4b as an organizer of macromolecular protein complexes, where PMCA4b could recruit diverse proteins through interaction with different domains. Furthermore, the functional association with RASSF1 indicates a role for PMCA4b in the modulation of Ras-mediated signaling.  相似文献   

4.
PMCA1–4 isoforms have been recently recognised as regulators of various signalling pathways in mammalian cells. PMCAs were found to interact with calcineurin A in an isoform specific manner. In this study we focus on the interaction of calcineurin A with PMCA4 and its effect on catecholamine secretion in PC12 cells with reduced PMCA2 or PMCA3 content. Reduction of synthesis of PMCA2 or PMCA3 led to upregulation of PMCA4 manifested by preferential interaction of PMCA4 with calcineurin A. On the other hand, we observed a significant reduction of dopamine secretion, which did not correspond with an increased [Ca2+]c. This result indicates that the interaction of PMCA4 with calcineurin A plays a regulatory role in the signalling during catecholamine secretion.  相似文献   

5.
PMCA1-4 isoforms have been recently recognised as regulators of various signalling pathways in mammalian cells. PMCAs were found to interact with calcineurin A in an isoform specific manner. In this study we focus on the interaction of calcineurin A with PMCA4 and its effect on catecholamine secretion in PC12 cells with reduced PMCA2 or PMCA3 content. Reduction of synthesis of PMCA2 or PMCA3 led to upregulation of PMCA4 manifested by preferential interaction of PMCA4 with calcineurin A. On the other hand, we observed a significant reduction of dopamine secretion, which did not correspond with an increased [Ca(2+)](c). This result indicates that the interaction of PMCA4 with calcineurin A plays a regulatory role in the signalling during catecholamine secretion.  相似文献   

6.
7.
The Homer family of scaffold proteins couples NMDA receptors to metabotropic glutamate receptors and links extracellular signals to calcium release from intracellular stores. Ania-3 is a member of the Homer family and is rapidly inducible in brain in response to diverse stimuli. Here, we report the identification of the plasma membrane Ca2+ ATPase (PMCA) as a novel Ania-3/Homer-associated protein. Ania-3/Homer interacts with the b-splice forms of all PMCAs (PMCA1b, 2b, 3b, and 4b) via their PDZ domain-binding COOH-terminal tail. Ectopically expressed Ania-3 colocalized with the PMCA at the plasma membrane of polarized MDCK epithelial cells, and endogenous Ania-3/Homer and PMCA2 are co-expressed in the soma and dendrites of primary rat hippocampal neurons. The interaction between Ania-3/Homer and PMCAs may represent a novel mechanism by which local calcium signaling and hence synaptic function can be modulated in neurons.  相似文献   

8.
The plasma membrane calcium ATPases (PMCA) are a family of genes which extrude Ca2+ from the cell and are involved in the maintenance of intracellular free calcium levels and/or with Ca2+ signalling, depending on the cell type. In the cardiovascular system, Ca2+ is not only essential for contraction and relaxation but also has a vital role as a second messenger in signal transduction pathways. A complex array of mechanisms regulate intracellular free calcium levels in the heart and vasculature and a failure in these systems to maintain normal Ca2+ homeostasis has been linked to both heart failure and hypertension. This article focuses on the functions of PMCA, in particular isoform 4 (PMCA4), in the heart and vasculature and the reported links between PMCAs and contractile function, cardiac hypertrophy, cardiac rhythm and sudden cardiac death, and blood pressure control and hypertension. It is becoming clear that this family of calcium extrusion pumps have essential roles in both cardiovascular health and disease.  相似文献   

9.
The cerebellum expresses one of the highest levels of the plasma membrane Ca(2+) ATPase, isoform 2 in the mammalian brain. This highly efficient plasma membrane calcium transporter protein is enriched within the main output neurons of the cerebellar cortex; i.e. the Purkinje neurons (PNs). Here we review recent evidence, including electrophysiological and calcium imaging approaches using the plasma membrane calcium ATPase 2 (PMCA2) knockout mouse, to show that PMCA2 is critical for the physiological control of calcium at cerebellar synapses and cerebellar dependent behaviour. These studies have also revealed that deletion of PMCA2 throughout cerebellar development in the PMCA2 knockout mouse leads to permanent signalling and morphological alterations in the PN dendrites. Whilst these findings highlight the importance of PMCA2 during cerebellar synapse function and development, they also reveal some limitations in the use of the PMCA2 knockout mouse and the need for additional experimental approaches including cell-specific and reversible manipulation of PMCAs.  相似文献   

10.
The main role of the plasma membrane Ca2+/calmodulin-dependent ATPase (PMCA) is in the removal of Ca2+ from the cytosol. Recently, we and others have suggested a new function for PMCA as a modulator of signal transduction pathways. This paper shows the physical interaction between PMCA (isoforms 1 and 4) and alpha-1 syntrophin and proposes a ternary complex of interaction between endogenous PMCA, alpha-1 syntrophin, and NOS-1 in cardiac cells. We have identified that the linker region between the pleckstrin homology 2 (PH2) and the syntrophin unique (SU) domains, corresponding to amino acids 399-447 of alpha-1 syntrophin, is crucial for interaction with PMCA1 and -4. The PH2 and the SU domains alone failed to interact with PMCA. The functionality of the interaction was demonstrated by investigating the inhibition of neuronal nitric-oxide synthase-1 (NOS-1); PMCA is a negative regulator of NOS-1-dependent NO production, and overexpression of alpha-1 syntrophin and PMCA4 resulted in strongly increased inhibition of NO production. Analysis of the expression levels of alpha-1 syntrophin protein in the heart, skeletal muscle, brain, uterus, kidney, or liver of PMCA4-/- mice, did not reveal any differences when compared with those found in the same tissues of wild-type mice. These results suggest that PMCA4 is tethered to the syntrophin complex as a regulator of NOS-1, but its absence does not cause collapse of the complex, contrary to what has been reported for other proteins within the complex, such as dystrophin. In conclusion, the present data demonstrate for the first time the localization of PMCA1b and -4b to the syntrophin.dystrophin complex in the heart and provide a specific molecular mechanism of interaction as well as functionality.  相似文献   

11.
The plasma membrane calcium/calmodulin-dependent calcium ATPase (PMCA) (Shull, G.E., and J. Greeb. 1988. J. Biol. Chem. 263:8646-8657; Verma, A.K., A.G. Filoteo, D.R. Stanford, E.D. Wieben, J.T. Penniston, E.E. Strehler, R. Fischer, R. Heim, G. Vogel, S. Mathews, et al. 1988. J. Biol. Chem. 263:14152-14159; Carafoli, E. 1997. Basic Res. Cardiol. 92:59-61) has been proposed to be a regulator of calcium homeostasis and signal transduction networks of the cell. However, little is known about its precise mechanisms of action. Knock-out of (mainly neuronal) isoform 2 of the enzyme resulted in hearing loss and balance deficits due to severe inner ear defects, affecting formation and maintenance of otoconia (Kozel, P.J., R.A. Friedman, L.C. Erway, E.N. Yamoah, L.H. Liu, T. Riddle, J.J. Duffy, T. Doetschman, M.L. Miller, E.L. Cardell, and G.E. Shull. 1998. J. Biol. Chem. 273:18693-18696). Here we demonstrate that PMCA 4b is a negative regulator of nitric oxide synthase I (NOS-I, nNOS) in HEK293 embryonic kidney and neuro-2a neuroblastoma cell models. Binding of PMCA 4b to NOS-I was mediated by interaction of the COOH-terminal amino acids of PMCA 4b and the PDZ domain of NOS-I (PDZ: PSD 95/Dlg/ZO-1 protein domain). Increasing expression of wild-type PMCA 4b (but not PMCA mutants unable to bind PDZ domains or devoid of Ca2+-transporting activity) dramatically downregulated NO synthesis from wild-type NOS-I. A NOS-I mutant lacking the PDZ domain was not regulated by PMCA, demonstrating the specific nature of the PMCA-NOS-I interaction. Elucidation of PMCA as an interaction partner and major regulator of NOS-I provides evidence for a new dimension of integration between calcium and NO signaling pathways.  相似文献   

12.
We studied the effect of insulin resistance (IR) induced by administration of a fructose-rich diet (FRD) to normal Wistar rats for 21 days, upon islet plasma membrane calcium ATPases (PMCAs) and insulin secretion. FRD rats showed significantly higher triglyceride and insulin levels, insulin:glucose ratio and HOMA-IR index than controls. FRD islets released significantly more insulin in response to glucose and showed (a) marked changes in PMCA isoform protein content (decreased PMCA 2 and increased PMCA 3), (b) a decrease in total PMCAs activity, and (c) higher levels of cytosolic calcium [Ca2+]i. The lower PMCAs activity with the resultant increase in [Ca2+]i would favor the compensatory greater release of insulin necessary to cope with the IR state present in FRD rats and to maintain normal glucose homeostasis. Thus, changes in PMCAs activity and isoform expression play a modulatory role upon insulin secretion during long-term adaptation to an increased hormone demand.  相似文献   

13.
The plasma membrane Ca(2+)-ATPase (PMCA) pumps play an important role in the maintenance of precise levels of intracellular Ca(2+) [Ca(2+)](i), essential to the functioning of neurons. In this article, we review evidence showing age-related changes of the PMCAs in synaptic plasma membranes (SPMs). PMCA activity and protein levels in SPMs diminish progressively with increasing age. The PMCAs are very sensitive to oxidative stress and undergo functional and structural changes when exposed to oxidants of physiological relevance. The major signatures of oxidative modification in the PMCAs are rapid inactivation, conformational changes, aggregation, internalization from the plasma membrane and proteolytic degradation. PMCA proteolysis appears to be mediated by both calpains and caspases. The predominance of one proteolytic pathway vs the other, the ensuing pattern of PMCA degradation and its consequence on pump activity depends largely on the type of insult, its intensity and duration. Experimental reduction of PMCA expression not only alters the dynamics of cellular Ca(2+) handling but also has a myriad of downstream consequences on various aspects of cell function, indicating a broad role of these pumps. Age- and oxidation-related down-regulation of the PMCAs may play an important role in compromised neuronal function in the aging brain and its several-fold increased susceptibility to neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and stroke. Therapeutic approaches that protect the PMCAs and stabilize [Ca(2+)](i) homeostasis may be capable of slowing and/or preventing neuronal degeneration. The PMCAs are therefore emerging as a new class of drug targets for therapeutic interventions in various chronic degenerative disorders.  相似文献   

14.
Plasma membrane calcium pumps (PMCAs) are integral membrane proteins that actively expel Ca(2+) from the cell. Specific Ca(2+)-ATPase activity of erythrocyte membranes increased steeply up to 1.5-5 times when the membrane protein concentration decreased from 50 microg/ml to 1 microg/ml. The activation by dilution was also observed for ATP-dependent Ca(2+) uptake into vesicles from Sf9 cells over-expressing the PMCA 4b isoform, confirming that it is a property of the PMCA. Dilution of the protein did not modify the activation by ATP, Ca(2+) or Ca(2+)-calmodulin. Treatment with non-ionic detergents did not abolish the dilution effect, suggesting that it was not due to resealing of the membrane vesicles. Pre-incubation of erythrocyte membranes with Cytochalasin D under conditions that promote actin polymerization abolished the dilution effect. Highly-purified, micellar PMCA showed no dilution effect and was not affected by Cytochalasin D. Taken together, these results suggest that the concentration-dependent behavior of the PMCA activity was due to interactions with cytoskeletal proteins. The dilution effect was also observed with different PMCA isoforms, indicating that this is a general phenomenon for all PMCAs.  相似文献   

15.
16.
The transport of calcium to the extracellular space carried out by plasma membrane Ca2+ pumps (PMCAs) is essential for maintaining low Ca2+ concentrations in the cytosol of eukaryotic cells. The activity of PMCAs is controlled by autoinhibition. Autoinhibition is relieved by the binding of Ca2+-calmodulin to the calmodulin-binding autoinhibitory sequence, which in the human PMCA is located in the C-terminal segment and results in a PMCA of high maximal velocity of transport and high affinity for Ca2+. Autoinhibition involves the intramolecular interaction between the autoinhibitory domain and a not well defined region of the molecule near the catalytic site. Here we show that the fusion of GFP to the C terminus of the h4xb PMCA causes partial loss of autoinhibition by specifically increasing the Vmax. Mutation of residue Glu99 to Lys in the cytosolic portion of the M1 transmembrane helix at the other end of the molecule brought the Vmax of the h4xb PMCA to near that of the calmodulin-activated enzyme without increasing the apparent affinity for Ca2+. Altogether, the results suggest that the autoinhibitory interaction of the extreme C-terminal segment of the h4 PMCA is disturbed by changes of negatively charged residues of the N-terminal region. This would be consistent with a recently proposed model of an autoinhibited form of the plant ACA8 pump, although some differences are noted.  相似文献   

17.
The function of the plasma membrane calmodulin-dependent calcium ATPase (PMCA) in myocardium is unknown. PMCA is localized in caveolae, 50- to 100-nm membrane invaginations, which also contain receptors for endothelin-1 (ET-1) and various other ligands. PMCA has been suggested to play a role in regulation of caveolar signal transduction. We studied the effects of the hypertrophic agonist ET-1 and increased coronary perfusion pressure on cardiac synthesis of B-type natriuretic peptide (BNP) in transgenic rats overexpressing the human PMCA 4CI in isolated perfused heart preparation. ET-1 infusion for 2 h increased BNP mRNA levels twofold in left ventricles (LV) of nontransgenic rats, whereas no increase was noted in PMCA rat hearts. Similar responses were seen in adrenomedullin and c-fos mRNA levels, and in immunoreactive BNP secretion. Increased mechanical load produced by elevated perfusion pressure induced similar 1.5- to 1.6-fold increases in LV BNP mRNA in both nontransgenic and PMCA rat hearts. These results show that cardiac overexpression of PMCA attenuates ET-1-stimulated early induction of cardiac gene expression, suggesting that PMCA may modulate myocardial growth responses.  相似文献   

18.
Calcineurin mediates repression of plasma membrane Ca2+-ATPase-4 (PMCA4) expression in neurons, whereas c-Myb is known to repress PMCA1 expression in vascular smooth muscle cells (VSMC). Here, we describe a novel mouse VSMC line (MOVAS) in which 45Ca efflux rates decreased 50%, fura 2-AM-based intracellular Ca2+ concentrations ([Ca2+]i) increased twofold, and real-time RT-PCR and Western blot revealed a 40% decrease in PMCA4 expression levels from G0 to G1/S in the cell cycle, where PMCA4 constituted 20% of total PMCA protein. Although calcineurin activity increased fivefold as MOVAS progressed from G0 to G1/S, inhibition of this increase with either BAPTA or retroviral transduction with peptide inhibitors of calcineurin (CAIN), or its downstream target nuclear factor of activated T cells (NFAT) (VIVIT), had no effect on the repression of PMCA4 mRNA expression at G1/S. By contrast, Ca2+-independent activity of the calmodulin-dependent protein kinase-II (CaMK-II) increased eightfold as MOVAS progressed from G0 to G1/S, and treatment with an inhibitor of CaMK-II (KN-93) or transduction of a c-Myb-neutralizing antibody significantly alleviated the G1/S-associated repression of PMCA4. These data show that G1/S-specific PMCA4 repression in proliferating VSMC is brought about by c-Myb and CaMK-II and that calcineurin may regulate cell cycle-associated [Ca2+]i through alternate targets. calcineurin; c-Myb; plasma membrane Ca2+-ATPase-4; cell cycle  相似文献   

19.
Plasma membrane calcium pumps (PMCAs) are integral membrane proteins that actively expel Ca2+ from the cell. Specific Ca2+-ATPase activity of erythrocyte membranes increased steeply up to 1.5-5 times when the membrane protein concentration decreased from 50 μg/ml to 1 μg/ml. The activation by dilution was also observed for ATP-dependent Ca2+ uptake into vesicles from Sf9 cells over-expressing the PMCA 4b isoform, confirming that it is a property of the PMCA. Dilution of the protein did not modify the activation by ATP, Ca2+ or Ca2+-calmodulin. Treatment with non-ionic detergents did not abolish the dilution effect, suggesting that it was not due to resealing of the membrane vesicles. Pre-incubation of erythrocyte membranes with Cytochalasin D under conditions that promote actin polymerization abolished the dilution effect. Highly-purified, micellar PMCA showed no dilution effect and was not affected by Cytochalasin D. Taken together, these results suggest that the concentration-dependent behavior of the PMCA activity was due to interactions with cytoskeletal proteins. The dilution effect was also observed with different PMCA isoforms, indicating that this is a general phenomenon for all PMCAs.  相似文献   

20.
The plasma membrane calcium ATPases (PMCAs) are vital regulators of basal Ca(2+) and shape the nature of intracellular free Ca(2+) transients after cellular stimuli and are thus regulators of a plethora of cellular processes. Studies spanning many years have identified that at least some cancers are associated with a remodeling of PMCA isoform expression. This alteration in Ca(2+) efflux capacity may have a variety of consequences including reduced sensitivity to apoptosis and increases in the responsiveness of cancer cells to proliferative stimuli. In this review we provide an overview of studies focused on PMCAs in the context of cancer. We discuss how the remodeling of PMCA expression could provide a survival and/or growth advantage to cancer cells, as well as the potential of pharmacological agents that target specific PMCA isoforms to be novel therapies for the treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号