首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, the guanylate cyclase activity of Tetrahymena pyriformis was shown to be activated by an endogenous modulator (calmodulin)-like protein (Na-gao, S., Suzuki, Y., Watanabe, Y., and Nozawa, Y. (1979) Biochem. Biophys. Res. Commun. 90, 261-268). This protein has now been identified as the modulator protein. The identification was based on the capability of this protein to activate the brain modulator-deficient phosphodiesterase and the mobility of this protein upon polyacrylamide gel electrophoresis. The activation of guanylate cyclase was specifically attributable to the Tetrahymena modulator protein since other modulator proteins examined (bovine brain, sea anemone, and scallop) were ineffective. Under the conditions where the activation of Tetrahymena guanylate cyclase occurred, guanylate cyclase activities from other sources, that include rat brain, rat lung, and human platelet, were not affected. In the phosphodiesterase activation, the potencies of scallop and Tetrahymena modulator proteins, which are represented by reciprocals of the quantities of proteins required for half-maximal activation of enzyme, were 66% and 55%, respectively, of that of the brain protein. The same decreasing order was seen for the affinity of these proteins for Ca2+ in enzyme activation. The results suggest a directional change of the modulator protein during the molecular evolution toward an increase in the capability in Ca2+-dependent enzyme activation.  相似文献   

2.
《The Journal of cell biology》1988,107(6):2243-2251
To investigate the function of calmodulin (CaM) in the mitotic apparatus, the effect of microinjected CaM and chemically modified CaMs on nocodazole-induced depolymerization of spindle microtubules was examined. When metaphase PtK1 cells were microinjected with CaM or a CaM-TRITC conjugate, kinetochore microtubules (kMTs) were protected from the effect of nocodazole. The ability of microinjected CaM to subsequently protect kMTs from the depolymerizing effect of nocodazole was dose dependent, and was effective for approximately 45 min, with protection decreasing if nocodazole treatment was delayed for more than 60 min after injection of CaM. The CaM-TRITC conjugate, similar to native CaM, displayed the ability to activate bovine brain CaM- dependent adenylate cyclase in a Ca++-dependent manner and showed a Ca++-dependent mobility shift when subjected to PAGE. A heat-altered CaM-TRITC conjugate also protected kMTs from the effect of nocodazole. However, this modified CaM was not able to activate adenylate cyclase nor did it display a Ca++-dependent mobility shift when electrophoresed. In a permeabilized cell model system, both CaM analogs were observed to bind to the spindle in a Ca++-independent manner. In contrast, a performic acid-oxidized CaM did not have a protective effect on spindle structure when microinjected into metaphase cells before nocodazole treatment. The oxidized CaM did not activate adenylate cyclase and did not exhibit Ca++-dependent mobility on polyacrylamide gels. These results are interpreted as supporting the hypothesis that CaM binds to the mitotic spindle in a Ca++-independent manner and that CaM may serve in the spindle, at least in part, to stabilize kMTs.  相似文献   

3.
Tetrahymena calmodulin radioiodinated with a lactoperoxidase method retained full ability to activate Tetrahymena guanylate cyclase. Binding of [125I]calmodulin to Tetrahymena microsomal membranes was Ca2+-dependent and inhibited by excess unlabeled calmodulin or trifluoperazine. When Triton X-100-solubilized microsomes were chromatographed on calmodulin Sepharose, several proteins were found to interact with calmodulin in a Ca2+-dependent manner.  相似文献   

4.
The influence of polyamines (putrescine, spermidine, and spermine) on the activity of human platelet soluble guanylate cyclase and the stimulation of the enzyme by sodium nitroprusside (SNP), YC-1 and their combination was investigated. All these polyamines stimulated the guanylate cyclase activity and potentiated its activation by sodium nitroprusside. The stimulatory effects of sodium nitroprusside and putrescine (or spermine) were addidive; spermidine produced a synergistic activation and increased the additive effect. All the polyamines inhibited the enzyme activation by YC-1 and decreased the synergistic activation of SNP-stimulated guanylate cyclase activity by YC-1 with nearly the same potency. The ability of the investigated polyamines to potentiate and to increase synergistically (similar to to YC-1, but less effective) NO-dependent activation of soluble guanylate cyclase represents a new biochemical effect of these compounds; this effect should be taken into consideration, especially due to the endogenous nature of polyamines. The data obtained suggest, that specific biological functions of polyamines in the processes of growth and differentiation of cells may be also related to the ability of compounds to activate soluble guanylate cyclase and to increase intracellular cGMP level.  相似文献   

5.
The X-ray structures of the guanine nucleotide binding domains (amino acids 1-166) of five mutants of the H-ras oncogene product p21 were determined. The mutations described are Gly-12----Arg, Gly-12----Val, Gln-61----His, Gln-61----Leu, which are all oncogenic, and the effector region mutant Asp-38----Glu. The resolutions of the crystal structures range from 2.0 to 2.6 A. Cellular and mutant p21 proteins are almost identical, and the only significant differences are seen in loop L4 and in the vicinity of the gamma-phosphate. For the Gly-12 mutants the larger side chains interfere with GTP binding and/or hydrolysis. Gln-61 in cellular p21 adopts a conformation where it is able to catalyze GTP hydrolysis. This conformation has not been found for the mutants of Gln-61. Furthermore, Leu-61 cannot activate the nucleophilic water because of the chemical nature of its side chain. The D38E mutation preserves its ability to bind GAP.  相似文献   

6.
Tetrahymena calcium-binding protein is indeed a calmodulin   总被引:1,自引:0,他引:1  
We previously isolated a Ca2+-binding protein from a ciliate, Tetrahymena, and designated it as TCBP (Tetrahymena Ca2+-binding protein). The present paper reports that TCBP, which has two high affinity Ca2+-binding sites (Kd=4.6 X 10(-6) M), could activate porcine brain cyclic nucleotide phosphodiesterase at a concentration of over 10(-6) M free Ca2+, with the same mode of activation as that of authentic (porcine brain) calmodulin. In addition, the amino acid composition of TCBP was essentially the same as that of brain calmodulin. Therefore, we conclude that TCBP as an activator of Tetrahymena guanylate cyclase is indeed a calmodulin.  相似文献   

7.
The altered calcium binding activity of calmodulins (CaM) with point mutations can be restored toward that of wild type CaMs by the formation of a complex between CaM and a CaM binding sequence. Three different site-specific mutations resulted in selective effects on the apparent stoichiometry and affinity of CaM for calcium, with maintenance of the ability to activate myosin light chain kinase. The effects on calcium binding, however, were suppressed when the mutant CaMs were complexed with RS20, a peptide analog of a myosin light chain kinase CaM binding site. The mutations included: 1) a Glu----Ala mutation at two phylogenetically conserved calcium ligands in the second (E67A-CaM) and fourth (E140A-CaM) sites; and 2) a Ser----Phe mutation at residue 101 (S101F-CaM) which affects ion channel regulation. The mutant CaMs bind 4 calciums in the absence of magnesium, but two sites have approximately 60- to 300-fold weaker binding than wild-type CaM (SYNCAM CaM). E67A-CaM and E140A-CaM bound only two calciums and S101F-CaM bound 4 calciums in the presence of magnesium. E67A-CaM and E140A-CaM recovered the ability to bind 4 calcium ions in the presence of the RS20 CaM binding peptide. These results are consistent with models in which the calcium binding activity of CaM within a supramolecular complex is different from purified CaM and raise the possibility that the selective functional effects of in vivo mutations in the calcium binding sites of CaM might be partially due to the ability of some CaM binding proteins to select and utilize CaM conformations with calcium ligation structures different from the so-called canonical EF-hand.  相似文献   

8.
P Kov?cs  G Csaba  S Nagao  Y Nozawa 《Microbios》1989,59(239):123-128
The primary interaction with insulin accounted for considerable increases in both the calmodulin content and guanylate cyclase activity of Tetrahymena. Both activities were still elevated after 24 h (6-8 generations), but while the calmodulin level showed a decrease, guanylate cyclase activity showed a further significant increase relative to the immediate response. A second treatment with insulin decreased rather than increased both activities, but to dissimilar degrees, in that the calmodulin content returned to the control level, whereas guanylate cyclase activity still increased over the level measured after the first treatment. It appears that insulin imprinting altered the calmodulin-dependent guanylate cyclase regulation in Tetrahymena, and caused a switch-over to an 'energy-saving' system through decelerating the breakdown of cGMP by phosphodiesterase.  相似文献   

9.
Bovine brain calmodulin (B-CaM) was shown to inhibit the native Tetrahymena calmodulin (T-CaM)-dependent activation of guanylate cyclase in Tetrahymena at the concentrations that failed to affect the basal enzyme activity. The enzyme inhibition was completely reversed by high concentration of T-CaM, but not by Ca2+. The antagonistic interaction between T-CaM and B-CaM was not observed in the calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine brain. Two calmodulins migrated independently on 15% polyacrylamide gel system. These results suggest that B-CaM exerts its inhibitory effect on the guanylate cyclase activation by interacting with the calmodulin-binding site of this enzyme.  相似文献   

10.
Stimulation of RBL-2H3 m1 mast cells through the IgE receptor with antigen, or through a G protein-coupled receptor with carbachol, leads to the rapid appearance of phosphothreonine in nonmuscle myosin heavy chain II-A (NMHC-IIA). We demonstrate that this results from phosphorylation of Thr-1940 by calcium/calmodulin-dependent protein kinase II (CaM kinase II), activated by increased intracellular calcium. The phosphorylation site in rodent NMHC-IIA was localized to the carboxyl terminus of NMHC-IIA distal to the coiled-coil region, and identified as Thr-1940 by site-directed mutagenesis. A fusion protein containing the NMHC-IIA carboxyl terminus was phosphorylated by CaM kinase II in vitro, while mutation of Thr-1940 to Ala eliminated phosphorylation. In contrast to rodents, in humans Thr-1940 is replaced by Ala, and human NMHC-IIA fusion protein was not phosphorylated by CaM kinase II unless Ala-1940 was mutated to Thr. Similarly, co-transfected Ala --> Thr-1940 human NMHC-IIA was phosphorylated by activated CaM kinase II in HeLa cells, while wild type was not. In RBL-2H3 m1 cells, inhibition of CaM kinase II decreased Thr-1940 phosphorylation, and inhibited release of the secretory granule marker hexosaminidase in response to carbachol but not to antigen. These data indicate a role for CaM kinase stimulation and resultant threonine phosphorylation of NMHC-IIA in RBL-2H3 m1 cell activation.  相似文献   

11.
The purpose of this study was to elucidate the mechanisms by which arachidonic acid activates guanylate cyclase from guinea pig lung. Guanylate cyclase activities in both homogenate and soluble fractions of lung were examined. Guanylate cyclase activity was determined by measuring formtion of [32-P] cyclic GMP from alpha-[32-P] GTP in the presence of Mn2+, a phosphodiesterase inhibitor and a suitable GTP regenerating system. Arachidonic acid, and to a slight extent dihomo-gamma-linolenic acid, activated guanylate cyclase in homogenate but not soluble fractions. Similarly, phospholipase A2 activated homogenate but not soluble guanylate cyclase. Methyl arachidonate, linolenic, linoleic and oleic acids did not activate guanylate cyclase in either fraction. High concentrations of indomethacin, meclofenamate and aspirin inhibited activation of homogenate guanylate cyclase by arachidonic acid and phospholipase A2, without altering basal enzyme activity. These data suggested that a product of cyclooxygenase activity, present in the microsomal fraction, may have accounted for the capacity of arachidonic acid to activate homogenate guanylate cyclase. This view was supported by the findings that addition of the microsomal fraction to be soluble fraction enabled arachidonic acid to activate soluble guanylate cyclase, an effect which was reduced with cycloooxygenase inhibitors. Lipoxygenase activated guanylate cyclase in homogenate and soluble fractions. Arachidonic acid potentiated the activation of soluble guanylate cyclase by lipoxygenase, and this effect was inhibited with nordihydroguairetic acid, 1-phenyl-3-pyrazolidone and hydroquinone, but not with high concentrations of indomethacin, meclofenamate or aspirin. These data suggest that arachidonic acid activates guinea pig lung guanylate cyclase indirectly, via two independent mechanisms, one involving the microsomal fraction and the other involving lipoxygenase.  相似文献   

12.
13.
Ca2+-regulated guanylate cyclase in ciliary membranes from Paramecium contained tightly bound calmodulin. Antisera against calmodulin from Tetrahymena and soybean inhibited enzyme activity. EGTA did not easily release calmodulin; however, La3+ inhibited guanylate cyclase by dissociation of calmodulin. While La could not replace Ca in the activation of guanylate cyclase, it substituted for Ca2+ in the activation of calmodulin-dependent phosphodiesterase from pig brain independently of whether homologous or Paramecium calmodulin was used. After removal of endogenous calmodulin from guanylate cyclase, reconstitution was achieved with calmodulin from Paramecium, Tetrahymena, pig brain, and soybean. Ca2+-binding proteins lacking trimethyllysine like calmodulin from Dictyostelium, parvalbumin, and troponin C failed to restore enzyme activity. The properties of the native and reconstituted guanylate cyclase/calmodulin complex were compared. Reassociation of calmodulin with its target enzyme was weak since all calmodulin remained in the supernatant after a single centrifugation. While most enzyme characteristics remained unchanged in the reconstituted complex, the inhibition by Ca greater than 100 microM was of a mixed-type compared to noncompetitive inhibition in the native enzyme. The regulation of the enzyme by cations was also altered. Whereas Ca was the most potent and specific activator of the native enzyme, in the reconstituted system Sr was far more effective.  相似文献   

14.
Conditions necessary for the activation by ascorbic acid of soluble guanylate cyclase purified from bovine lung have been examined. Ascorbic acid (0.1-10 mM) did not directly activate the enzyme, nonetheless, pronounced activation by ascorbate (3-10 mM) was observed in incubation mixtures containing 1 microM bovine liver catalase. Superoxide dismutase (SOD) and mannitol did not affect the catalase-dependent activation of guanylate cyclase elicited by ascorbate, suggesting that superoxide anion and hydroxyl radical were not mediating the activation of the enzyme. However, SOD enhanced the relatively low level activation of the enzyme elicited by catalase in the absence of added ascorbate. Pronounced inhibition (both with and without added ascorbate) was observed of catalase-dependent activation of guanylate cyclase by either ethanol (100 mM) or a fungal catalase preparation. Neither ethanol nor fungal catalase inhibited activation of guanylate cyclase by S-nitrosyl-N-acetyl-penicillamine (SNAP), a source of the nitric oxide free radical. These observations indicate that autoxidation of ascorbic acid or thiols present with the guanylate cyclase preparation leads to generation of H2O2, and its metabolism by bovine liver catalase mediates the concomitant activation of guanylate cyclase. The mechanism of activation appears to be associated with the presence of Compound I of catalase and to be inhibited by superoxide anion.  相似文献   

15.
The mature rat testis contains both a soluble guanylate cyclase and a soluble adenylate cyclase. Both these soluble enzymes prefer manganous ion for activity. It is known that guanylate cyclase can, when activated by a variety of agents, catalyze the formation of cyclic AMP. The following experiments were performed to determine whether the testicular soluble adenylate and guanylate cyclase activities were carried on the same molecule. Analysis of supernatants from homogenized rat testis by gel filtration and sucrose density gradient centrifugation showed that the two activities were clearly separable. The molecular weight of guanylate cyclase is 143 000, while that of adenylate cyclase is 58 000. Treatment of the column fractions with 0.1 mM sodium nitroprusside allowed guanylate cyclase activity to be expressed with Mg(2+) as well as with Mn(2+). Sodium nitroprusside did not affect the metal ion or substrate specificity of adenylate cyclase. These experiments show that adenylate and guanylate cyclase activities are physically separable.  相似文献   

16.
Dictyostelium calmodulin: affinity isolation and characterization   总被引:1,自引:0,他引:1  
The Ca2+-binding regulatory protein calmodulin (CaM) has been purified from the cellular slime mold, Dictyostelium discoideum. Isolation of homogeneous Dictyostelium CaM was accomplished in high yield by ion-exchange chromatography and Ca2+-dependent affinity chromatography on phenothiazine-Sepharose 4B. This isolate has been demonstrated to possess the following physicochemical and functional properties characteristic of other CaM isolates: (i) a molecular weight ca. 16,000; (ii) an amino acid composition similar to other CaMs--with the notable exception that Dictyostelium CaM, as first determined by Bazari and Clarke [(1981) J. Biol. Chem. 256, 3598-3603] lacks the single trimethylated lysine (Tml) residue identified in nearly all CaMs purified to date; (iii) a CNBr peptide map similar to that of other CaMs; (iv) a Ca2+-dependent shift in migration during native- and sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses; (v) ability to form Ca2+-dependent complexes with rabbit skeletal muscle troponin I; and (vi) ability to activate in a Ca2+-dependent manner bovine brain cyclic nucleotide phosphodiesterase.  相似文献   

17.
The purpose of this study was to elucidate the mechanisms by which arachidonic acid activates guanylate cyclase from guinea pig lung. Guanylate cyclase activities in both homogenate and soluble fractions of lung were examined. Guanylate cyclase activity was determined by measuring formation of [32-P] cyclic GMP from α-[32-P] GTP in the presence of Mn2+, a phosphodiesterase inhibitor and a suitable GTP regenerating system. Arachidonic acid, and to a slight extent dihomo-γ-linolenic acid, activated guanylate cyclase in homogenate but not soluble fractions. Similarly, phospholipase A2 activated homogenate but not soluble guanylate cyclase. Methyl arachidonate, linolenic, linoleic and oleic acids did not activate guanylate cyclase in either fraction. High concentrations of indomethacin, meclofenamate and aspirin inhibited activation of homogenate guanylate cyclase by arachidonic acid and phospholipase A2, without altering basal enzyme activity. These data suggested that a product of cyclooxygenase activity, present in the microsomal fraction, may have accounted for the capacity of arachidonic acid to activate homogenate guanylate cyclase. This view was supported by the findings that addition of the microsomal fraction to the soluble fraction enabled arachidonic acid to activate soluble guanylate cyclase, an effect which was reduced with cyclooxygenase inhibitors. Lipoxygenase activated guanylate cyclase in homogenate and soluble fractions. Arachidonic acid potentiated the activation of soluble guanylate cyclase by lipoxygenase, and this effect was inhibited with nordihydroguaiaretic acid, 1-phenyl-3-pyrazolidone and hydroquinone, but not with high concentrations of indomethacin, meclofenamate or aspirin. These data suggest that arachidonic acid activates guinea pig lung guanylate cyclase indirectly, via two independent mechanisms, one involving the microsomal fraction and the other involving lipoxygenase.  相似文献   

18.
Bacillus anthracis, a spore-forming infectious bacterium, produces an exotoxin, called the edema factor (EF), that functions in part by disrupting internal signalling pathways. When complexed with human host cell calmodulin (CaM), EF becomes an active adenylyl cyclase, producing the internal signal substance cyclic-AMP in an uncontrolled fashion. Recently, the crystal structures for uncomplexed EF and EF:CaM complexes in the presence and absence of a substrate analog (3'-deoxy-ATP), were reported. EF mutational studies have implicated a number of residues important in CaM binding and/or in the generation of the adenylyl cyclase active site, formed by the movements of the EF switch A, B and C regions upon CaM binding. Here we report on the results of molecular dynamics (MD) simulations on two EF:CaM complexes, one containing wild-type EF and the other containing EF in which a cluster of residues in the switch A region (L523, K525, Q526 and V529) have been mutated to alanine. The switch A mutations cause a large increase in the flexibility of the switch C region, the rupture of a number of EF-CaM interactions, an expansion of the carboxyl-terminal domain of CaM, and a change in the Ca(2+) ion binding abilities of the CaM that is in complex with EF. The results indicate the importance of the mutated switch A residues in maintaining a compact EF:CaM complex that appears to be a prerequisite for the generation of a fully-functional adenylyl cyclase active site. The effects of mutating key residues (K346, K353, H577, E588, D590 and N639) in the active site region of EF (to alanine) on the ability of EF to bind the 3'-deoxy-ATP substrate analog were also examined. Active-site residue substitutions at positions 583 (N583A) and 577 (H577A) were found to be particularly disruptive for the placement of the adenine ring moiety into the position found in the x-ray crystal structure of the ligand-protein complex.  相似文献   

19.
Recently, we demonstrated the presence of multiple folate-binding sites on the cell surface of Dictyostelium discoideum. These sites were divided into two major classes, with different ligand specificities (A and B). Each major class consists of several interconvertible subtypes. In the present report, the ability of 13 folate analogs to activate both adenylate and guanylate cyclase in pre- as well as postaggregative cells is examined. The patterns of correlation between binding and activation data indicate that guanylate cyclase activation is mediated by the B-sites in both developmental stages (P less than 0.001). In postaggregative cells, adenylate cyclase also seems to be activated by the B-sites (P less than 0.001). In contrast, adenylate cyclase activation in preaggregative cells was well correlated with the specificity of A-sites (P less than 0.01). Remarkably, the potencies of activation were less affected by molecular modifications than the binding affinities were, as suggested by a slope of 0.4 in a plot of K0.5 values of activation vs. binding. This observation argues against the existence of a transduction mechanism in which the response is proportional to receptor occupancy. For the B-receptor, however, the degree of receptor occupancy appears to determine the response. The existence of folic acid antagonists is demonstrated, some of which are specific for either A-sites coupled to adenylate cyclase or for B-sites coupled to guanylate cyclase.  相似文献   

20.
Activation of cerebral guanylate cyclase by nitric oxide.   总被引:15,自引:0,他引:15  
Mouse cerebral guanylate cyclase was activated by catalase in the presence of sodium azide (NaN3), which is known to form catalase-NO complex, while nitrosamines and nitric oxide (NO gas) were capable of activating cerebral guanylate cyclase in the absence of catalase. The activation of guanylate cyclase by NaN3-catalase or nitrosamines was markedly inhibited by ferrohemoglobin which has a high affinity for NO, but not by ferrihemoglobin. These data suggest that NO or NO containing compounds may activate guanylate cyclase, whereas ferrohemoglobin may exhibit an inhibitory effect on the activation of guanylate cyclase, possibly by interacting with NO or NO containing compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号