首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pre-clinical studies indicate that efficient retrovirus-mediated gene transfer into hematopoietic stem cells and progenitor cells can be achieved by co-localizing retroviral particles and target cells on specific adhesion domains of fibronectin. In this pilot study, we used this technique to transfer the human multidrug resistance 1 gene into stem and progenitor cells of patients with germ cell tumors undergoing autologous transplantation. There was efficient gene transfer into stem and progenitor cells in the presence of recombinant fibronectin fragment CH-296. The infusion of these cells was associated with no harmful effects and led to prompt hematopoietic recovery. There was in vivo vector expression, but it may have been limited by the high rate of aberrant splicing of the multidrug resistance 1 gene in the vector. Gene marking has persisted more than a year at levels higher than previously reported in humans.  相似文献   

3.
Replication-defective amphotropic retrovirus vectors containing either the human beta-globin gene with introns or an intronless beta-globin minigene were constructed and used to study beta-globin expression following gene transfer into hematopoietic cells. The beta-globin genes were marked by introducing a 6-base-pair insertion into the region corresponding to the 5' untranslated region of the beta-globin mRNA to allow detection of RNA encoded by the new gene in human cells expressing normal human beta-globin RNA. Introduction of a virus containing the beta-globin gene with introns into murine erythroleukemia cells resulted in inducible expression of human beta-globin RNA and protein, while the viruses containing the minigene were inactive. The introduced human beta-globin gene was 6 to 110% as active as the endogenous mouse beta maj-globin genes in six randomly chosen cell clones. Introduction of the viruses into human BFU-E cells, followed by analysis of marked and unmarked globin RNAs in differentiated erythroid colonies, revealed that the introduced beta-globin gene was about 5% as active as the endogenous genes in these normal human erythroid cells and that again the minigene was inactive. These data are discussed in terms of the potential treatment of genetic disease by gene therapy.  相似文献   

4.
5.
6.
7.
Retroviral-mediated gene transfer has been used in an attempt to efficiently and stably express functional cell-surface molecules in lymphoid and myeloid cells. The human CD8 molecule is a T cell-specific surface receptor that is intimately involved in class I MHC-restricted Ag recognition and subsequent T cell activation. After infection with a recombinant, replication-defective retrovirus containing the human CD8 alpha cDNA, bone marrow cells were transplanted into lethally irradiated recipients. The majority of lymphoid and myeloid cells of reconstituted animals expressed high levels of human CD8 for at least 8 months after transplantation. Transfer of bone marrow and spleen cells from these recipients 100 days after transplantation into secondary recipients also resulted in long term expression of CD8 in lymphoid and myeloid cells. CD8 expressed in splenic T cells associated with the lymphoid-specific tyrosine protein kinase p56lck, participated in T cell activation and conferred an increased xenogeneic response to human MHC class I Ag. Thus, retroviral-mediated gene transfer allows the long term, functional expression of cell-surface molecules in normal murine lymphoid and myeloid cells.  相似文献   

8.
9.
K Ozawa 《Human cell》1999,12(1):57-61
A hematopoietic stem cell is considered to be one of the ideal targets for gene therapy, and there is expectation that gene therapy will be established based on the technology of hematopoietic stem cell transplantation. However, in recent clinical trials of stem cell gene therapy for monogenic diseases, significant clinical improvement has not been reported. One of the main obstacles is the low efficiency of gene transfer into hematopoietic stem cells. Many investigators have been trying to improve the transduction efficiency to the clinically applicable level. Another approach to solve this problem is to develop the method for selective expansion of transduced hematopoietic stem cells in vivo. We are currently developing novel regulatory genes (selective amplifier genes) for stem cell gene therapy.  相似文献   

10.
11.
12.
Mouse bone marrow cells were subjected to electroporation in the presence of RSVCAT and SV2NEO plasmids. CAT activity was detected in the G-418 resistant granulocyte-macrophage colonies. RSVCAT electroporated into primary bone marrow cells, repopulated lethally irradiated mice as demonstrated by the persistence of CAT activity in the hematopoietic tissues showing that electroporation can offer a powerful mode of gene transfer into bone marrow cells.  相似文献   

13.
Human lymphoblasts deficient in the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) were infected with an amphotropic helper-free retroviral vector expressing human HPRT cDNA. The stability and expression of the HPRT provirus in five cell lines with different proviral integration sites were examined by determining HPRT mutation and reversion frequencies and by blot hybridization studies. Mutation to the HPRT-negative phenotype occurred at frequencies of approximately 4 X 10(-5) to 3 X 10(-6) per generation. Most mutations in each of the five cell lines were associated with partial or complete deletions or rearrangements of the provirus. Several mutants retained a grossly intact HPRT provirus, and in one such mutant HPRT shutdown resulted from a revertible epigenetic mechanism that was not associated with global changes in proviral methylation. Therefore, mutation and shutdown of the HPRT provirus in human lymphoblasts result from mechanisms similar to those reported for several other avian and mammalian replication-competent retroviruses.  相似文献   

14.
We have previously reported effective gene transfer with a targeted molecular conjugate adenovirus vector through the c-kit receptor in hematopoietic progenitor cell lines. However, a c-kit-targeted recombinant retroviral vector failed to transduce cells, indicating the existence of significant differences for c-kit target gene transfer between these two viruses. Here we demonstrate that conjugation of an adenovirus to a c-kit-retargeted retrovirus vector enables retroviral transduction. This finding suggests the requirement of endosomalysis for successful c-kit-targeted gene transfer. Furthermore, we show efficient gene transfer to, and high transgene expression (66%) in, CD34-selected, c-kit(+) human peripheral blood stem cells using a c-kit-targeted adenovirus vector. These findings may have important implications for future vector development in c-kit-targeted stem cell gene transfer.  相似文献   

15.
16.
Abstract

Previous attempts in using recombinant viral vectors to transfer genes into bone marrow cells have resulted in expression frequencies of 2‐15% (8,9,12,13,14,24). These vectors, however, require complex gene vector constructions and culture methods and have been difficult to utilize. We therefore have used electroporation to establish a less complicated and equally efficient technique for gene transfer. Conditions yielding high gene transfer into bone marrow precursor cells by electroporation were determined using a mutant dihydrofolate reductase gene and/or murine MHC class II genes. Successful transfer and expression of these genes were assessed by (1) fluorescence staining using monoclonal antibodies, (2) acquired resistance to the anti‐folate drug methotrexate and (3) Southern blot analysis. Stable integration of the newly acquired mutant dihydrofolate reductase gene was observed in > 25% of murine hematopoietic progenitor cells (CFU‐M). Electroporation of class II genes in conjunction with the mutant dihydrofolate reductase and subsequent selection with methotrexate resulted in expression of transfected la molecules in 12‐15% of bone marrow derived macrophages. Integration of the transferred major histocompatibility genes was verified by Southern blot analysis of high molecular weight cellular DNA following electroporation and methotrexate selection. The frequencies of gene transfer and expression achieved in this study suggest that electroporation is a viable option for monitoring gene expression in bone marrow derived cells.  相似文献   

17.
Transgenic mice have proven to be an effective expression system for studying developmental control of the human fetal and adult beta-globin genes. In the current work we are interested in developing the transgenic mouse system for the study of the human embryonic beta-globin gene, epsilon. An epsilon-globin gene construction (HSII,I epsilon) containing the human epsilon-globin gene with 0.2 kb of 3' flanking sequence and 13.7 kb of extended 5' flanking region including the erythroid-specific DNase I super-hypersensitive sites HSI and HSII was made. This construction was injected into fertilized mouse ova, and its expression was analyzed in peripheral blood, brain, and liver samples of 13.5 day transgenic fetuses. Fetuses carrying intact copies of the transgene expressed human epsilon-globin mRNA in their peripheral blood. Levels of expression of human epsilon-globin mRNA in these transgenic mice ranged from 2% to 26% per gene copy of the endogenous mouse embryonic epsilon y-globin mRNA level. Furthermore, the human epsilon-globin transgene was expressed specifically in peripheral blood but not in brain or in liver which is an adult erythroid tissue at this stage. Thus, the HSII,I, epsilon transgene was expressed in an erythroid-specific and embryonic stage-specific manner in the transgenic mice. A human epsilon-globin gene construction that did not contain the distal upstream flanking region which includes the HSI and HSII sites, was not expressed in the embryos of transgenic mice. These data indicate that the human epsilon-globin gene with 5' flanking region extending to include DNase I super-hypersensitive sites HSI and HSII is sufficient for the developmentally specific activation of the human epsilon-globin gene in erythroid tissue of transgenic mice.  相似文献   

18.
19.

Background

Long-term hematopoietic stem cells (LT-HSCs) migrate from the fetal liver (FL) to the fetal bone marrow (FBM) during development. Various adhesion and chemotactic receptor genes have been implicated in the migration of adult LT-HSCs. However, their role in the migration of fetal LT-HSCs is not clearly understood due, in part, to the rare number of these cells in fetal tissues, which preclude classical gene expression analysis. The aim of this study is to characterize the expression of migration related genes in fetal LT-HSC across different anatomical locations during development.

Methodology/Principal Findings

We isolated fetal LT-HSC from different developmental stages, as well as different anatomical locations, and performed single-cell multiplex RT-qPCR and flow cytometry analysis of eight molecules involved in adult LT-HSC migration. Our results show that the gene expression of the chemokine receptor Cxcr4 in LT-HSC varies across developmental microenvironments and times, while the cadherin Cdh2 (Ncad) and the calcium receptor Casr show higher gene expression and variability only in FBM at 17.5 days post coitum (dpc). The cadherin Cdh5 (Vecad) maintains high expression variability only during fetal development, while the integrin subunit Itga5 (α5) increases its variability after 14.5 dpc. The integrin subunits Itga4 (α4) and Itgal (Lfa1), as well as the selectin ligand Selplg (Psgl1), did not show differences in their expression in single LT-HSCs irrespective of the developmental times or anatomical microenvironments studied.

Conclusions/Significance

Our data demonstrate that the expression pattern of phenotypically identical, single LT-HSCs fluctuates as a function of developmental stage and anatomical microenvironment. This is the first exhaustive gene expression comparison of migration-related molecules in fetal tissues across developmental times, enhancing the understanding of LT-HSC migration fate decisions during development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号