首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
ARR5-gene expression was studied in the course of natural leaf senescence and detached leaf senescence in the dark using Arabidopsis thaliana plants transformed with the P ARR5 -GUS gene construct. GUS-activity was measured as a marker of ARR5-gene expression. Chlorophyll and total protein amounts were also estimated to evaluate leaf senescence. Natural leaf senescence was accompanied by the progressive decline in the GUS-activity in leaves of the 2nd and 3rd nodes studied, and this shift of GUS-activity was more pronounced than the loss of chlorophyll content. The ability of the ARR5-gene promoter to respond to cytokinin was not eliminated during natural leaf senescence, as was demonstrated by a cytokinin-induced increase in GUS activity in leaves after their detachment and incubation on benzyladenine (BA, 5 × 10−6 M) in the dark. Leaf senescence in the dark was associated with the further decrease in the GUS-activity. The ARR5-gene promoter response to cytokinin was enhanced with the increase of the age of plants, taken as a source of leaves for cytokinin treatments. Hence, although the expression of the ARR5 gene reduces during natural and dark/detached leaf senescence, the ARR5-gene sensitivity to cytokinin was maintained in both cases and even increased with the leaf age. This data suggest that the ARR5 gene, which belongs to the type-A negative regulators of plant response to cytokinin, could be a feedback regulator able to prevent retardation by cytokinin of leaf senescence when it is important for plant life. Growth regulators either reduced ARR5 gene response to cytokinin during senescence of mature detached leaves in the dark (SA, meJA, ABA, SP) or increased it (IAA), thus modifying the resulting rate of its expression.  相似文献   

3.
4.
5.

Background  

The Arabidopsis response regulator 22 (ARR22) is one of two members of a recently defined novel group of two-component system (TCS) elements. TCSs are stimulus perception and response modules of prokaryotic origin, which signal by a His-to-Asp phosphorelay mechanism. In plants, TCS regulators are involved in hormone response pathways, such as those for cytokinin and ethylene. While the functions of the other TCS elements in Arabidopsis, such as histidine kinases (AHKs), histidine-containing phosphotransfer proteins (AHPs) and A-type and B-type ARRs are becoming evident, the role of ARR22 is poorly understood.  相似文献   

6.
7.
In Arabidopsis thaliana, a set of type-A authentic response regulator (ARR) genes, consisting of 10 homologous members, is induced primarily in response to the phytohormone cytokinin. Among these, we found that the expression of ARR9 is uniquely regulated through the circadian clock in a cytokinin-independent manner. This finding appears to be compatible to the current idea that some ARR genes (namely, ARR3, ARR4, ARR8, and ARR9) are implicated in an additional level of regulation of the circadian clock. Hence, the result of this study provided us with a new insight into the complex molecular mechanisms underlying both the cytokinin signaling and circadian rhythm.  相似文献   

8.
9.
10.
11.
The plant hormone cytokinin plays essential roles in many aspects of growth and development. The cytokinin signal is transmitted by a multi‐step phosphorelay to the members of two functionally antagonistic classes of Arabidopsis response regulators (ARRs): type B ARRs (response activators) and type A ARRs (negative‐feedback regulators). Previous studies have shown that mutations in AXR1, encoding a subunit of the E1 enzyme in the RUB (related to ubiquitin) modification pathway, lead to decreased cytokinin sensitivity. Here we show that the cytokinin resistance of axr1 seedlings is suppressed by loss of function of the type A ARR family member ARR5. Based on the established role of the RUB pathway in ubiquitin‐dependent proteolysis, these data suggest that AXR1 promotes the cytokinin response by facilitating type A ARR degradation. Indeed, both genetic (axr1 mutants) and chemical (MLN4924) suppression of RUB E1 increased ARR5 stability, suggesting that the ubiquitin ligase that promotes ARR5 proteolysis requires RUB modification for optimal activity.  相似文献   

12.
The Arabidopsis thaliana AHK4 histidine kinase (also known as CRE1 or WOL) acts as a cytokinin signal transducer, presumably, in concert with downstream components, such as histidine-containing phosphotransfer factors (AHPs) and response regulators (ARRs), through the histidine-to-aspartate (His-->Asp) phosphorelay. Among 10 members of the type-A ARR family, the cytokinin-induced expression of ARR15 in roots is selectively impaired in the cre1-1 mutant, which carries a mutation in the AHK4 gene, suggesting a link between this type-A response regulator and the AHK4-mediated cytokinin signal transduction in roots. To address this issue further, we characterized a T-DNA insertion mutant of ARR15, and also constructed transgenic lines (referred to as ARR15-ox) that overexpress the ARR15 gene in a manner independent of cytokinin. While the T-DNA insertion mutant (arr15-1) showed no apparent phenotype, the cytokinin-independent overexpression of ARR15 in ARR15-ox plants resulted in a reduced sensitivity toward exogenously applied cytokinin, not only in elongation of roots in plants, but also in green callus formation (or shoot formation) in explants. Cytokinin-induced expressions of certain type-A ARRs were also down-regulated in ARR15-ox plants. These results support the view that ARR15 acts as a repressor that mediates a negative feedback loop in the cytokinin and AHK4-mediated His-->Asp phosphorelay.  相似文献   

13.
Auxin and cytokinin direct cell proliferation and differentiation during the in vitro culture of plant cells, but the molecular basis of these processes, especially de novo shoot regeneration, has not been fully elucidated. Here, we describe the regulatory control of shoot regeneration in Arabidopsis thaliana (L.) Heynh, based on the interaction of ARABIDOPSIS RESPONSE REGULATOR12 (ARR12) and WUSCHEL (WUS). The major site of ARR12 expression coincided with the location where the shoot apical meristem (SAM) initiated. The arr12 mutants showed severely impaired shoot regeneration and reduced responsiveness to cytokinin; consistent with this, the overexpression of ARR12 enhanced shoot regeneration. Certain shoot meristem specification genes, notably WUSCHEL (WUS) and CLAVATA3, were significantly downregulated in the arr12 explants. Chromatin immunoprecipitation (ChIP) and transient activation assays demonstrated that ARR12 binds to the promoter of WUS. These observations indicate that during shoot regeneration, in vitro, ARR12 functions as a molecular link between cytokinin signaling and the expression of shoot meristem specification genes.  相似文献   

14.
15.
16.
17.
18.

Key message

AtSKIP participated in cytokinin-regulated leaf initiation. Putative phosphorylated AtSKIP (AtSKIP DD ) displayed the opposite function in the leaf development from AtSKIP transgenic seedlings.

Abstract

AtSKIP, as a multiple protein, is involved in many physiological processes, such as flowering, cell cycle regulator, photomorphogenesis and stress tolerance. However, the mechanism of AtSKIP in these processes is unclear. Here, we identify one gene, AtSKIP, which is associated with cytokinin-regulated leaf growth process in Arabidopsis. The expression of AtSKIP was regulated by cytokinin. Leaf development in AtSKIP overproduced seedlings was independent of light, but promoted by cytokinin, and phosphorylation of AtSKIP (AtSKIPDD) partially interfered with AtSKIP function as a positive regulator in cytokinin signaling, indicative of true leaf formation, and the defects of AtSKIPDD in the true leaf formation could be recovered to some extent by the addition of cytokinin. Moreover, different cytokinin-responsive gene Authentic Response Regulator 7 (ARR7) promoter-GUS activity further proved that expression of AtSKIP or AtSKIPDD altered endogenous cytokinin signaling in plants. Together, these data indicate that AtSKIP participates in cytokinin-regulated promotion of leaf growth in photomorphogenesis, and that phosphorylation interferes with AtSKIP normal function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号