首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Endonucleases encoded by mobile group I introns are highly specific DNases that induce a double-strand break near the site to which the intron moves. I-PpoI from the acellular slime mold Physarum polycephalum mediates the mobility of intron 3 (Pp LSU 3) in the extrachromosomal nuclear ribosomal DNA of this organism. We showed previously that cleavage by I-PpoI creates a four-base staggered cut near the point of intron insertion. We have now characterized several further properties of the endonuclease. As determined by deletion analysis, the minimal target site recognized by I-PopI was a sequence of 13 to 15 bp spanning the cleavage site. The purified protein behaved as a globular dimer in sedimentation and gel filtration. In gel mobility shift assays in the presence of EDTA, I-PpoI formed a stable and specific complex with DNA, dissociating with a half-life of 45 min. By footprinting and interference assays with methidiumpropyl-EDTA-iron(II), I-PpoI contacted a 22- to 24-bp stretch of DNA. The endonuclease protected most of the purines found in both the major and minor grooves of the DNA helix from modification by dimethyl sulfate (DMS). However, the reactivity to DMS was enhanced at some purines, suggesting that binding leads to a conformational change in the DNA. The pattern of DMS protection differed fundamentally in the two partially symmetrical halves of the recognition sequence.  相似文献   

3.
The first group I intron in the cox1 gene (cox1I1b ) of the mitochondrial genome of the fission yeast Schizosaccharomyces pombe is a mobile DNA element. The mobility is dependent on an endonuclease protein that is encoded by an intronic open reading frame (ORF). The intron-encoded endonuclease is a typical member of the LAGLIDADG protein family of endonucleases with two consensus motifs. In addition to this, analysis of several intron mutants revealed that this protein is required for intron splicing. However, this protein is one of the few group I intron-encoded proteins that functions in RNA splicing simultaneously with its DNA endonuclease activity. We report here on the biochemical characterization of the endonuclease activity of this protein artificially expressed in Escherichia coli. Although the intronic ORF is expressed as a fusion protein with the upstream exon in vivo, the experiments showed that a truncated translation product consisting of the C-terminal 304 codons of the cox1I1b ORF restricted to loop 8 of the intron RNA secondary structure is sufficient for the specific endonuclease activity in vitro. Based on the results, we speculate on the evolution of site-specific homing endonucleases encoded by group I introns in eukaryotes.  相似文献   

4.
5.
Group I intron endonuclease I-CreI is encoded by an open reading frame contained within a self-splicing intron in the Chlamydomonas reinhardtii chloroplast 23S rRNA gene. I-CreI initiates the lateral transfer or homing of this intron by specifically recognizing and cleaving a pseudopalindromic 19–24 bp homing site in chloroplast 23S rRNA genes that lack the intron. The gene encoding this enzyme has been subcloned, and the protein product has been purified and crystallized. The crystals belong to space group P321, with unit cell dimensions a = b = 78.2 Å, c = 67.4 Å. The crystal unit cell is consistent with an asymmetric unit consisting of the enzyme monomer. The specific volume of this unit cell is 3.3 Å3/Da. The crystals diffract to at least 3.0 Å resolution after flash-cooling, when using a rotating anode x-ray source and an RAXIS image plate detector. © 1997 Wiley-Liss Inc.  相似文献   

6.
The AnCOB group I intron from Aspergillus nidulans encodes a homing DNA endonuclease called I-AniI which also functions as a maturase, assisting in AnCOB intron RNA splicing. In this investigation we biochemically characterized the endonuclease activity of I-AniI in vitro and utilized competition assays to probe the relationship between the RNA- and DNA-binding sites. Despite functioning as an RNA maturase, I-AniI still retains several characteristic properties of homing endonucleases including relaxed substrate specificity, DNA cleavage product retention and instability in the reaction buffer, which suggest that the protein has not undergone dramatic structural adaptations to function as an RNA-binding protein. Nitrocellulose filter binding and kinetic burst assays showed that both nucleic acids bind I-AniI with the same 1 : 1 stoichiometry. Furthermore, in vitro competition activity assays revealed that the RNA substrate, when prebound to I-AniI, stoichiometrically inhibits DNA cleavage activity, yet in reciprocal experiments, saturating amounts of prebound DNA substrate fails to inhibit RNA splicing activity. The data suggest therefore that both nucleic acids do not bind the same single binding site, rather that I-AniI appears to contain two binding sites.  相似文献   

7.
The Didymium iridis DiSSU1 intron is located in the nuclear SSU rDNA and has an unusual twin-ribozyme organization. One of the ribozymes (DiGIR2) catalyses intron excision and exon ligation. The other ribozyme (DiGIR1), which along with the endonuclease-encoding I-DirI open reading frame (ORF) is inserted in DiGIR2, carries out hydrolysis at internal processing sites (IPS1 and IPS2) located at its 3' end. Examination of the in vivo expression of DiSSU1 shows that after excision, DiSSU1 is matured further into the I-DirI mRNA by internal DiGIR1-catalysed cleavage upstream of the ORF 5' end, as well as truncation and polyadenylation downstream of the ORF 3' end. A spliceosomal intron, the first to be reported within a group I intron and the rDNA, is removed before the I-DirI mRNA associates with the polysomes. Taken together, our results imply that DiSSU1 uses a unique combination of intron-supplied ribozyme activity and adaptation to the general RNA polymerase II pathway of mRNA expression to allow a protein to be produced from the RNA polymerase I-transcribed rDNA.  相似文献   

8.
9.
A novel and only recently recognized class of enzymes is composed of the site-specific endonucleases encoded by some group I introns. We have characterized several aspects of I-Ppo, the endonuclease that mediates the mobility of intron 3 in the ribosomal DNA of Physarum polycephalum. This intron is unique among mobile group I introns in that it is located in nuclear DNA. We found that I-Ppo is encoded by an open reading frame in the 5' half of intron 3, upstream of the sequences required for self-splicing of group I introns. Either of two AUG initiation codons could start this reading frame, one near the beginning of the intron and the other in the upstream exon, leading to predicted polypeptides of 138 and 160 amino acid residues. The longer polypeptide was the major form translated in vitro in a reticulocyte extract. From nuclease assays of proteins synthesized in vitro with partially deleted DNAs, we conclude that both polypeptides possess endonuclease activity. We also have expressed I-Ppo in Escherichia coli, using a bacteriophage T7 RNA polymerase expression system. The longer polypeptide also was the predominant form made in this system. It showed enzymatic activity in bacteria in vivo, as demonstrated by the cleavage of a plasmid carrying the target site. Like several other intron-encoded endonucleases, I-Ppo makes a four-base staggered cut in its ribosomal DNA target sequence, very near the site where intron 3 becomes integrated in crosses of intron 3-containing and intron 3-lacking Physarum strains.  相似文献   

10.
A sequence-specific endonuclease present in extracts of Rhodopseudomonas sphaeroides 630 has been purified and characterized. The enzyme, Rsr II, recognises and cleaves the palindromic heptanucleotide sequence: (sequence; see test) By virtue of its unusual specificity, RsrII cuts most DNA molecules very infrequently which should facilitate the physical mapping of large genomes.  相似文献   

11.
The second intron in the mitochondrial cytb gene of Saccharomyces capensis, belonging to group I, encodes a 280 amino acid protein containing two LAGLIDADG motifs. Genetic and molecular studies have previously shown that this protein has a dual function in the wild-type strain. It acts as a specific homing endonuclease I-ScaI promoting intron mobility and as a maturase promoting intron splicing. Here we describe the synthesis of a universal code equivalent to the mitochondrial sequence coding for this protein and the in vitro characterization of I-ScaI endonuclease activity, using a truncated mutant form of the protein p28bi2 produced in Escherichia coli. We have also determined the cleavage pattern as well as the recognition site of p28bi2. It was found that p28bi2 generates a double-strand cleavage downstream from the intron insertion site with 4 nt long 3-overhangs. Mutational analysis of the DNA target site shows that p28bi2 recognizes a 16–19 bp sequence from positions –11 to +8 with respect to the intron insertion site.  相似文献   

12.
I- Dmo I is a homing enzyme of the LAGLI-DADG type that recognizes up to 20 bp of DNA and is encoded by an archaeal intron of the hyperthermophilic archaeon Desulfurococcus mobilis . A combined mutational and DNA footprinting approach was employed to investigate the specificity of the I- Dmo I-substrate interaction. The results indicate that the enzyme binds primarily to short base paired regions that border the sites of DNA cleavage and intron insertion. The minimal substrate spans no more than 15 bp and while sequence degeneracy is tolerated in the DNA binding regions, the sequence and size of the cleavage region is highly conserved. The enzyme has a slow turnover rate and cuts the coding strand with a slight preference over the non-coding strand. Complex formation produces some distortion of the DNA double helix within the cleavage region. The data are compatible with the two DNA-binding domains of I- Dmo I bridging the minor groove, where cleavage occurs, and interacting within the major groove on either side, thereby stabilizing a distorted DNA double helix. This may provide a general mode of DNA interaction at least for the LAGLIDADG-type homing enzymes.  相似文献   

13.
I-DmoI is a 22 kDa endonuclease encoded by an intron in the 23 S rRNA gene of the hyperthermophilic archaeon Desulfurococcus mobilis. The structure of I-DmoI has been determined to 2.2 A resolution using multi-wavelength anomalous diffraction techniques. I-DmoI, a protein of the LAGLIDADG motif family, represents the first structure of a freestanding endonuclease with two LAGLIDADG motifs, and the first of a thermostable homing endonuclease. I-DmoI consists of two similar alpha/beta domains (alphabetabetaalphabetabetaalpha) related by pseudo 2-fold symmetry. The LAGLIDADG motifs are located at the carboxy-terminal end of the first alpha-helix of each domain. These helices form a two-helix bundle at the interface between the domains and are perpendicular to a saddle-shaped DNA binding surface, formed by two four-stranded antiparallel beta-sheets. Despite substantially different sequences, the overall fold of I-DmoI is similar to that of two other LAGLIDADG proteins for which the structures are known, I-CreI and the endonuclease domain of PI-SceI. The three structures differ most in the loops connecting the beta-strands, relating to the respective DNA target site sizes and geometries. In addition, the absence of conserved residues surrounding the active site, other than those within the LAGLIDADG motif, is of mechanistic importance. Finally, the carboxy-terminal domain of I-DmoI is smaller and has a more irregular fold than the amino-terminal domain, which is more similar to I-CreI, a symmetric homodimeric endonuclease. This is reversed compared to PI-SceI, where the amino-terminal domain is more similar to carboxy-terminal domain of I-DmoI and to I-CreI, with interesting evolutionary implications.  相似文献   

14.
Oligodeoxynucleotides have been prepared which contain changes in the functional group pattern present in the EcoRV recognition site d(GATATC). These modifications involve the deletion of specific functional groups or the reversal of the relative positions of functional groups within the canonical six base pair recognition site. The duplex stability of these modified oligodeoxynucleotides has been assessed by determining the thermodynamic parameters characterizing helix formation. Steady-state kinetic parameters have been used to characterize the interaction of the modified oligodeoxynucleotides with the EcoRV endonuclease. The enzyme is very sensitive to the deletion of either of the adenine amino or thymine methyl groups, or the reversal of the relative positions of the adenine amino group and thymine carboxy group which form an interstrand hydrogen bond in the major groove of the B-DNA helix. Conversely, deletion of the guanine amino group had only minimal effects upon the measured kinetic parameters. Deletion of the exocyclic amino group from the "inner" dA-dT base pair resulted in the fragment which interacted with the enzyme on the basis of observed inhibition experiments but was not cleaved. The results suggest that the endonuclease interacts with its recognition sequence via contacts in the major groove of the B-DNA helix and that both hydrogen bonding to the adenine amino groups and also hydrophobic interactions with the thymine methyl groups are involved.  相似文献   

15.
Oligodeoxynucleotides have been prepared that contain changes in the functional group pattern present in the EcoRI recognition site. These changes involve "functional group deletions", "functional group reversals", and "displaced functional groups". Steady-state kinetic parameters have been used to characterize the interaction of these modified recognition sites with the EcoRI endonuclease. Changes in the functional group pattern have varying effects upon the cleavage reaction. Both the exocyclic amino groups of the two adenine residues and the methyl groups of the thymine residues appear to interact with the endonuclease quite differently. In both cases efficient catalysis was observed when these functional groups were present at the "outer" dA-dT base pair. Selectivity was decreased by over an order of magnitude largely via increases in Km when these functional groups were deleted. Similar modifications at the "inner" dA-dT base pair did not alter the kinetic parameters significantly from those observed with the native sequence. Addition of an amino group to the minor groove at the outer dA-dT base pair resulted in a modified recognition site that interacted with the enzyme, on the basis of observed competitive inhibition kinetics, but was not cleaved.  相似文献   

16.
RmInt1 is a functional group II intron found in Sinorhizobium meliloti where it interrupts a group of IS elements of the IS630-Tc1 family. In contrast to many other group II introns, the intron-encoded protein (IEP) of RmInt1 lacks the characteristic conserved part of the Zn domain associated with the IEP endonuclease activity. Nevertheless, in this study, we show that RmInt1 is capable of inserting into a vector containing the DNA spanning the RmInt1 target site from the genome of S. meliloti. Efficient homing was also observed in the absence of homologous recombination (RecA- strains). In addition, it is shown that RmInt1 is able to move to its target in a heterologous host (S. medicae). Homing of RmInt1 occurs very efficiently upon DNA target uptake (conjugation/electroporation) by the host cell resulting in a proportion of invaded target of 11-30%. Afterwards, the remaining intronless target DNA is protected from intron invasion.  相似文献   

17.
The pal 4 nuclease (termed I-Sce II) is encoded in the group I al 4 intron of the COX I gene of Saccharomyces cerevisiae. It introduces a specific double-strand break at the junction of the two exons A4-A5 and thus mediates the insertion of the intron into an intronless strain. To define the sequence recognized by pal 4 we introduced 35 single mutations in its target sequence and examined their cleavage properties either in vivo in E. coli (when different forms of the pal 4 proteins were artificially produced) or in vitro with mitochondrial extracts of a mutant yeast strain blocked in the splicing of the al 4 intron. We also detected the pal 4 DNA endonuclease activity in extracts of the wild type strain. The results suggest that 6 to 9 noncontiguous bases in the 17 base-pair region examined are necessary for pal 4 nuclease to bind and cleave its recognition site. We observed that the pal 4 nuclease specificity can be significantly different with the different forms of the protein thus explaining why only some forms are highly toxic in E. coli. This study shows that pal 4 recognition site is a complex phenomenon and this might have evolutionary implications on the transfer properties of the intron.  相似文献   

18.
Despite its small size (27.6 kDa), the group I intron-encoded I-SceI endonuclease initiates intron homing by recognizing and specifically cleaving a large intronless DNA sequence. Here, we used gel shift assays and footprinting experiments to analyze the interaction between I-SceI and its target. I-SceI was found to bind to its substrate in monomeric form. Footprinting using DNase I, hydroxyl radical, phenanthroline copper complexes, UV/DH-MePyPs photosensitizer, and base-modifying reagents revealed the asymmetric nature of the interaction and provided a first glimpse into the architecture of the complex. The protein interacts in the minor and major grooves and distorts DNA at three distinct sites: one at the intron insertion site and the other two, respectively, downstream (-8, -9) and upstream (+9, +10) from this site. The protein appears to stabilize the DNA curved around it by bridging the minor groove on one face of the helix. The scissile phosphates would lie on the outside of the bend, facing in the same direction relative to the DNA helical axis, as expected for an endonuclease that generates 3' overhangs. An internally consistent model is proposed in which the protein would take advantage of the concerted flexibility of the DNA sequence to induce a synergistic binding/kinking process, resulting in the correct positioning of the enzyme active site.  相似文献   

19.
The T4 phage td intron-encoded endonuclease (I-Tev I) cleaves the intron-deleted td gene (td delta I) 23 nucleotides upstream of the intron insertion site on the noncoding strand and 25 nucleotides upstream of this site on the coding strand, to generate a 2-base hydroxyl overhang in the 3' end of each DNA strand. I-Tev I-157, a truncated form in which slightly more than one third (88 residues) of the endonuclease is deleted, was purified to homogeneity and shown to possess endonuclease activity similar to that of I-TEV I, the full-length enzyme (245 residues). The minimal length of the td delta I gene that was cleaved by I-Tev I and I-Tev I-157 has been determined to be exactly 39 basepairs, from -27 (upstream in exon1) to +12 (downstream in exon2) relative to the intron insertion site. Similar to the full-length endonuclease, I-Tev I-157 cuts the intronless thymidylate synthase genes from such diverse organisms as Escherichia coli, Lactobacillus casei and the human. The position and nature of the in vitro endonucleolytic cut in these genes are homologous to those in td delta I. Point mutational analysis of the td delta I substrate based on the deduced consensus nucleotide sequence has revealed a very low degree of specificity on either side of the cleavage site, for both the full-length and truncated I-TEV I.  相似文献   

20.
DNA site recognition and reduced specificity of the Eco RI endonuclease   总被引:8,自引:0,他引:8  
It has been shown previously (Polisky, B., Green, P., Garfin, D. E., McCarthy, B. J., Goodman, H. M., and Boyer, H. W. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 3310-3314; Hsu, M., and Berg, P. (1978) Biochemistry 17, 131-138) that the cleavage sequence specificity of Eco RI endonuclease can be "relaxed" by various means. In this paper this phenomenon is explored in detail, in order to obtain further insight into the nature and selectivity of sequence recognition patterns between proteins and double-stranded nucleic acids. Using conditions of low ionic strength and alkaline pH, we have mapped the positions of potentially cleavable sites in the (completely sequenced) replicative form of the bacteriophage phi X174 genome, and have deduced their sequence. The time course of digestion of phi X174 DNA suggests that double-stranded sequences reading GGATTT, AAATTT, GAATTT, and GAATTA (only "top" strands, written 5' leads to 3', are shown) are cleaved readily under these conditions, while sequences reading CAATTN (N = A, T, G) resist attack. Cleavages at (at least) the more labile sites result in cohesive ends that are religatable. End group analysis of cleaved phi X174 DNA fragments indicates the presence of a 5'-terminal adenine residue on most of the fragments; some fragments may carry a 5'-terminal guanine residue, consistent with the cleavage site sequences suggested above. Addition of Mn2+ to cleavage reactions carried out at moderate salt concentrations and near-neutral pH induces the same pattern of cleavage seen at low ionic strength and alkaline pH. These results are combined with those from other studies, and are interpreted in terms of a model for the site-specific interaction of the Eco RI endonuclease with its substrate, considering both the effects of changes in DNA sequence and of environmental alterations. The resulting model is compared with data developed on similar grounds for Eco RI methylase (see Woodbury, C. P., Downey, R. L., and von Hippel, P. H. (1980) J. Biol. Chem. 255, 11526-11533), and attempts are made to define both common and differing molecular facets of the DNA recognition specificity of these companion (but genetically distinct) enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号