首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When Rat-1 cells bearing the ts LA29 mutant of Rous sarcoma virus (Rat1 LA29) are shifted from restrictive to permissive temperature, the pp60v-Src tyrosine kinase is activated and there is an increase in the cellular level of sn1,2-diacylglycerol (DRG) within 30 min which is not accompanied by increased inositol phospholipid hydrolysis. Temperature shift also increases the hydrolysis of phosphatidylcholine (PC), as determined by an increase in the generation of water soluble choline metabolites. Transphosphatidylation studies have shown that this occurs at least in part via a phospholipase D (PLD) catalysed pathway.  相似文献   

2.
We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of [3H]choline and [3H]phosphorylcholine ([3H]Pchol) from cells containing [3H]choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of [3H]phosphatidic acid ([3H]PA) in cells containing [3H]myristate-labeled PC. [3H]Diacylglycerol ([3H]DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with [3H]myristate and [14C]arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol. By analyzing the increase in 3H versus 14C in DAG, we estimate that the DAG that is formed in response to PMA arises largely from PC. Muscarinic receptor activation also causes formation of DAG from PC, but approximately 20% of carbachol-stimulated DAG appears to arise from hydrolysis of the phosphoinositides.  相似文献   

3.
Exposure of skate erythrocytes to hypotonic medium stimulates a rapid increase in levels of 1,2-diacylglycerol. Other treatments which produce cell swelling such as replacement of a portion of medium NaCl with the permeant solutes ethylene glycol or ammonium chloride also stimulate increases in diacylglycerol. Whereas the reduction of medium osmolarity to 460 mosm (from 940) stimulated a persistent diacylglycerol increase, the increase after reduction to 660 mosm was transient, peaking at 2.5 min and then slowly declining. This decline could be prevented by preincubation with the diacylglycerol kinase inhibitor R59022. To investigate the source of the increased diacylglycerol, the rate of incorporation of [32P]PO4 into each major phospholipid was measured. Reduction of osmolarity to 660 mosm stimulated the incorporation of phosphate into phosphatidylcholine markedly, with a smaller increase observed into phosphatidylinositol. To demonstrate phosphatidylcholine hydrolysis, erythrocytes were prelabeled with [32P]PO4. Subsequent exposure to hypotonic (660 mosm) medium stimulated a decrease in radioactivity in phosphatidylcholine and a large increase in radioactivity in phosphatidic acid. When stimulated in the presence of ethanol, 32PO4-labeled phosphatidylethanol was formed, suggesting activation of phospholipase D. In addition, the initial formation of 32PO4-labeled phosphatidic acid was not sensitive to inhibition of diacylglycerol kinase, supporting the role of direct activation of phospholipase D. These results indicate that hypotonicity and the accompanying cell swelling induce cell membrane phospholipid turnover, predominantly phosphatidylcholine, and production of the protein kinase C activator, diacylglycerol, which appears to occur via activation of phospholipase D.  相似文献   

4.
Agonist-induced degradation of phosphatidylcholine (PC) is of interest as this pathway of diacylglycerol (DG) generation may provide added opportunities for the regulation of protein kinase C (PKC). In REF52 cells [3H]myristic acid is preferentially incorporated into PC; this, coupled with the use of [3H]choline, allows for quantitation of both the water-soluble and the lipid products generated when PC is degraded. In cells prelabeled with [3H]choline, TPA stimulated a time-dependent release, into the medium, of choline and not phosphocholine or glycerophosphocholine. Treatment of [3H]myristic acid-labeled cells with either phorbol diesters, sn-1,2-dioctanoylglycerol, or vasopressin elicited the formation of labeled phosphatidate (PA) and DG. The temporal pattern of PC hydrolysis in cells treated with TPA is indicative of a precursor (PA)-product (DG) relationship for an enzymatic sequence initiated by phospholipase D. Adding propranolol, a phosphatidate phosphohydrolase inhibitor, eliminated TPA-induced DG formation, whereas PA generation was unaffected. From these data we conclude that TPA elicits DG formation from PC by the sequential actions of phospholipase D and phosphatidate phosphohydrolase.  相似文献   

5.
Human preimplantation embryos and endometrium secrete platelet-activating factor (PAF). The mechanism of phosphatidylcholine (PC) degradation stimulated by PAF was investigated in endometrial explants prelabeled with [methyl-3H]choline or preincubated with [3H]butan-1-ol. Analysis of the water-soluble metabolites of PAF-induced PC hydrolysis in secretory endometrium demonstrated that the stimulated generation of [3H]choline ([3H]Cho) precedes that of [3H]choline phosphate ([3H]ChoP) and [3H]glycerophosphocholine ([3H]GPC). Within 30 sec there was a rapid rise in PAF-induced [3H]Cho generation and by 2 min this had increased to 59.9% +/- 10.6% (p less than 0.02), with no effect upon [3H]ChoP and [3H]GPC during this period. Both [3H]GPC and [3H]ChoP, however, were increased at a later time point. The slower [3H]ChoP generation may suggest that PC-specific phospholipase C activation as well as delayed [3H]GPC rise may be due to PC-specific phospholipase A2 and lysophospholipase activation. Phospholipase D activity was confirmed by the incorporation of high-specific-activity [3H]butan-1-ol into [3H]phosphatidylbutanol ([3H]PBut). The rapid generation of [3H]PBut, which paralleled the rise in intracellular [3H]Cho, strongly suggests that PC breakdown is catalyzed by the phospholipase D pathway. It is proposed that PAF induces PC hydrolysis as a consequence of an early phospholipase D-catalyzed breakdown of PC in human secretory endometrium. This may be an alternative source for prostaglandin synthesis and an important pathway essential for long-term activation of local cellular events at the time of implantation.  相似文献   

6.
Hydrolysis of exogenous phosphatidylcholine (PtdCho) to 1,2-diacylglycerol by rat liver plasma membranes was stimulated by oleate concentrations as low as 0.1 mM. In the presence of 75 mM ethanol, the fatty acid also enhanced phosphatidylethanol (PtdEtOH) formation from PtdCho. These effects were also observed with linoleate and arachidonate, but not with saturated fatty acids or detergents, and were minimal in microsomes or mitochondria. Release of [3H]choline from exogenous Ptd[3H]Cho was stimulated by oleate, whereas phosphoryl[3H]choline formation was inhibited. Oleate and other unsaturated, but not saturated, fatty acids also stimulated the conversion of exogenous [14C]phosphatidic acid to [14C]diacylglycerol. These data are consistent with stimulatory effects of these fatty acids on both phospholipase D and phosphatidate phosphohydrolase in liver plasma membranes. The stimulatory effect of guanosine 5'-O-[3-thio]triphosphate) (20 microM) on PtdEtOH and diacylglycerol formation from PtdCho was enhanced by low concentrations of oleate. Phospholipase A2 also stimulated PtdEtOH and diacylglycerol formation from exogenous PtdCho. It is proposed that unsaturated fatty acids may play a physiological role in the regulation of diacylglycerol production through activation of phospholipase D and phosphatidate phosphohydrolase.  相似文献   

7.
8.
We have shown that 1,2-diacylglycerol hydroperoxides activate protein kinase C (PKC) as efficiently as does phorbol ester [Takekoshi S, Kambayashi Y, Nagata H, Takagi T, Yamamoto Y, Watanabe K. Activation of protein kinase C by oxidized diacylglycerol. Biochem Biophys Res Commun 1995; 217: 654-660]. 1,2-Diacylglycerol hydroperoxides also stimulate human neutrophils to release superoxide whereas their hydroxides do not [Yamamoto Y, Kambayashi Y, Ito T, Watanabe K, Nakano M. 1,2-Diacylglycerol hydroperoxides induce the generation and release of superoxide anion from human polymorphonuclear leukocytes. FEBS Lett 1997; 412: 461-464]. One of the proposed mechanisms for the formation of 1,2-diacylglycerol hydroperoxides is the hydrolysis of phosphatidylcholine hydroperoxides by phospholipase C (PLC). To confirm this hypothesis, we incubated 1-palmitoyl-2-linoleoyl-phosphatidylcholine (PLPC) liposomes containing PLPC hydroperoxides (PLPC-OOH) with Bacillus cereus PLC and found 1-palmitoyl-2-linoleoylglycerol (PLG) and its hydroperoxide (PLG-OOH) were produced. PLC hydrolyzed the two substrates without preference, as the yields of PLG and PLG-OOH were the same even though cholesterol was incorporated into liposomes to increase bilayer integrity. Phospholipid hydroperoxide glutathione peroxidase (PHGPX) reduced PLG-OOH to its hydroxide in the presence of glutathione while the conventional cytosolic glutathione peroxidase did not. These data suggest that PLC hydrolyzes oxidized biomembranes to give 1,2-diacylglycerol hydroperoxides for PKC stimulation but PHGPX may prevent neutrophil stimulation by reducing 1,2-diacylglycerol hydroperoxides to their hydroxides.  相似文献   

9.
Abstract

We have shown that 1,2-diacylglycerol hydroperoxides activate protein kinase C (PKC) as efficiently as does phorbol ester [Takekoshi S, Kambayashi Y, Nagata H, Takagi T, Yamamoto Y, Watanabe K. Activation of protein kinase C by oxidized diacylglycerol. Biochem Biophys Res Commun 1995; 217: 654-660]. 1,2-Diacylglycerol hydroperoxides also stimulate human neutrophils to release superoxide whereas their hydroxides do not [Yamamoto Y, Kambayashi Y, Ito T, Watanabe K, Nakano M. 1,2-Diacylglycerol hydroperoxides induce the generation and release of superoxide anion from human polymorphonuclear leukocytes. FEBS Lett 1997; 412: 461-464]. One of the proposed mechanisms for the formation of 1,2-diacylglycerol hydroperoxides is the hydrolysis of phosphatidylcholine hydroperoxides by phospholipase C (PLC). To confirm this hypothesis, we incubated 1-palmitoyl-2-linoleoyl-phosphatidylcholine (PLPC) liposomes containing PLPC hydroperoxides (PLPC-OOH) with Bacillus cereus PLC and found 1-palmitoyl-2-linoleoylglycerol (PLG) and its hydroperoxide (PLG-OOH) were produced. PLC hydrolyzed the two substrates without preference, as the yields of PLG and PLG-OOH were the same even though cholesterol was incorporated into liposomes to increase bilayer integrity. Phospholipid hydroperoxide glutathione peroxidase (PHGPX) reduced PLG-OOH to its hydroxide in the presence of glutathione while the conventional cytosolic glutathione peroxidase did not. These data suggest that PLC hydrolyzes oxidized biomembranes to give 1,2-diacylglycerol hydroperoxides for PKC stimulation but PHGPX may prevent neutrophil stimulation by reducing 1,2-diacylglycerol hydroperoxides to their hydroxides.  相似文献   

10.
Enhancement of cellular phospholipase D (PLD)-1 and phospholipase C (PLC)-mediated hydrolysis of endogenous phosphatidylcholine (PC) during receptor-mediated cell activation has received increasing attention inasmuch as both enzymes can result in the formation of 1,2-diacylglycerol (DAG). The activities of PLD and PLC were examined in purified mast cells by quantitating the mass of the water-soluble hydrolysis products choline and phosphorylcholine, respectively. Using an assay based on choline kinase-mediated phosphorylation of choline that is capable of measuring choline and phosphorylcholine in the low picomole range, we quantitated the masses of both cell-associated and extracellular choline and phosphorylcholine. Activating mast cells by crosslinking its immunoglobulin E receptor (Fc epsilon-RI) resulted in an increase in cellular choline from 13.1 +/- 1.2 pmol/10(6) mast cells (mean +/- SE in unstimulated cells) to levels 5- to 10-fold higher, peaking 20 s after stimulation and rapidly returning toward baseline. The increase in cellular choline mass paralleled the increase in labeled phosphatidic acid accumulation detected in stimulated cells prelabeled with [3H]palmitic acid and preceded the increase in labeled DAG. Although intracellular phosphorylcholine levels were approximately 15-fold greater than choline in unstimulated cells (182 +/- 19 pmol/10(6) mast cells), stimulation resulted in a significant fall in phosphorylcholine levels shortly after stimulation. Pulse chase experiments demonstrated that the receptor-dependent increase in intracellular choline and the fall in phosphorylcholine were not due to hydrolysis of intracellular phosphorylcholine and suggested a receptor-dependent increase in PC resynthesis. When the extracellular medium was examined for the presence of water-soluble products of PC hydrolysis, receptor-dependent increases in the mass of both choline and phosphorylcholine were observed. Labeling studies demonstrated that these extracellular increases were not the result of leakage of these compounds from the cytosol. Taken together, these data lend support for a quantitatively greater role for receptor-mediated PC-PLD compared with PC-PLC during activation of mast cells.  相似文献   

11.
The mechanism by which glucagon and cAMP analogues inhibit phosphatidylcholine biosynthesis was investigated in rat hepatocytes. The studies were facilitated by preparation of an antibody to a synthetic peptide (D-F-V-A-H-D-D-I-P-Y-S-S-A) corresponding to residues 164-176 of CTP:phosphocholine cytidylyl-transferase. The antibody, which was purified by affinity chromatography, quantitatively immunoprecipitated cytidylyltransferase from rat liver cytosol. Various analogues of cAMP had no effect on the labeling of cytidylyltransferase with 32Pi in rat hepatocytes. Nor did the cAMP analogues have any effect on the distribution of cytidylyltransferase between cytosol and membranes. These results indicate that the supply of CDP-choline does not limit phosphatidylcholine biosynthesis in hepatocytes treated with cAMP analogues. A decreased supply of diacylglycerol was considered as an alternative mechanism for inhibition of phosphatidylcholine biosynthesis. An approximately 30% decrease in diacylglycerol concentration was observed in hepatocytes treated with the cAMP analogues or glucagon, compared with controls. A similar decrease of phosphatidylcholine biosynthesis was observed. The cAMP-mediated decrease in diacylglycerol levels and inhibition of phosphatidylcholine biosynthesis were reversed by addition of 0.5-1.5 mM oleic acid to the treated hepatocytes. A correlation coefficient of 0.93 was calculated between the levels of diacylglycerol and the rate of phosphatidylcholine biosynthesis. In another approach, the diacylglycerol levels were increased by an inhibitor of diacylglycerol lipase (U-57908) which also reversed the cAMP effects on diacylglycerol levels and phosphatidylcholine biosynthesis. We conclude that the cAMP-mediated inhibition of phosphatidylcholine biosynthesis was not due to an effect on the phosphorylation of cytidylyltransferase. Instead, phosphatidylcholine biosynthesis appears to be inhibited due to a decreased level of diacylglycerol, a substrate for CDP-choline: 1,2-diacylglycerol cholinephosphotransferase.  相似文献   

12.
The molecular species of 1,2-diacylglycerol in control and agonist-stimulated rat hepatocytes were analyzed by high performance liquid chromatography. Twelve species were identified which were increased nonuniformly by 100 nM vasopressin. Most species were increased 2-3-fold, but some (C16:0/C20:4 and C18:0/C20:4) were increased 3-6-fold. Selectively greater increases in the latter two species were also induced by ATP, angiotensin II, and A23187 ionophore, however, phorbol ester caused uniform increases. Calcium depletion of the cells with chelator resulted in a uniform 2-fold effect of vasopressin on 1,2-diacylglycerol species, with greater increases in C16:0/C20:4 and C18:0/C20:4 being restored by Ca2+ readdition. Comparison of the increases in 1,2-diacylglycerol species caused by the Ca2+-mediated agents with the molecular species present in rat hepatocyte phospholipids supports the concept that phosphatidylcholine is a major source of the 1,2-diacylglycerol that accumulates. In hepatocytes incubated for 5 min to 2 h with 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine, the label was incorporated mainly into phosphatidylcholine, and subsequent incubation with vasopressin, angiotensin II, ATP, epinephrine, A23187, and phorbol ester caused formation of [3H]alkyl-acylglycerol, but not [3H]alkyl-phosphatidic acid. The time course and concentration dependence of the vasopressin effect were similar to those reported previously for total 1,2-diacylglycerol (Bocckino, S. B., Blackmore, P. F., and Exton, J. H. (1985) J. Biol. Chem. 260, 14201-14207). Calcium depletion induced by chelator inhibited the effect of vasopressin, and readdition of Ca2+ largely restored the effect. In cells incubated with [14C]lyso-phosphatidylcholine, [3H]phosphatidylcholine, or [14C]phosphatidylethanolamine for 5 or 30 min to label hepatocyte phosphatidylcholine, vasopressin also induced the formation of labeled 1,2-diacylglycerol, but not phosphatidic acid. In contrast, in hepatocytes prepared from rats injected intraportally with [3H]alkyl-lyso-glycerophosphocholine 20 h previously, the hormone induced the rapid formation of both labeled 1,2-diacylglycerol and phosphatidic acid. In summary, these isotopic data indicate that a rapidly labeled pool of phosphatidylcholine is hydrolyzed to 1,2-diacylglycerol and a slowly labeled pool is broken down to both 1,2-diacylglycerol and phosphatidic acid in hepatocytes stimulated by Ca2+-mobilizing agents. It is concluded from both the analyses of molecular species of 1,2-diacylglycerol and the labeling experiments that phosphatidylcholine is a major source of the 1,2-diacylglycerol that accumulates in hepatocytes stimulated with Ca2+-mobilizing agonists and that the mechanisms responsible may involve both Ca2+ and protein kinase C.  相似文献   

13.
In our previous studies, TPA treatment of LA-N-1 cells stimulated the production of diacylglycerol in nuclei, probably through the activation of a phospholipase C. Stimulation of the synthesis of nuclear phosphatidylcholine by the activation of CTP:phosphocholine cytidylyltransferase was also observed. The present data show that both effects were inhibited by the pretreatment of the cells with D609, a selective phosphatidylcholine-phospholipase C inhibitor, indicating that the diacylglycerol produced through the hydrolysis of phosphatidylcholine in the nuclei is reutilized for the synthesis of nuclear phosphatidylcholine and is required for the activation of CTP:phosphocholine cytidylyltransferase.  相似文献   

14.
15.
In this study we provide evidence for the involvement of protein kinase C (PKC) in phorbol diester-induced phosphatidylcholine (PC) hydrolysis by the phospholipase D pathway. Rat embryo fibroblasts (REF52) were prelabeled with either tritiated choline or myristic acid; these compounds are preferentially incorporated into cellular PC. Phorbol diester-induced PC degradation was determined by measuring the release of [3H]choline, and the formation of [3H]myristoyl-containing phosphatidate (PA), diacylglycerol (DG), and phosphatidylethanol (PE). Staurosporine, a PKC inhibitor, blocked from 73 to 90% of the phorbol diester-induced PC hydrolysis. The inhibition of phorbol diester-induced choline release by staurosporine was dose dependent with an approximate ED50 of 150 nM. Pretreatment of cells with phorbol diester inhibited subsequent phorbol diester-induced PC degradation by 78-92%. A close correlation between the ED50 for phorbol diester-stimulated choline release and the Kd for phorbol diester binding was demonstrated. Neither forskolin nor dibutyryl cAMP elicited cellular PC degradation. In vitro experiments using phospholipase D from Streptomyces chromofuscus showed that staurosporine did not inhibit and TPA did not stimulate enzyme activity.  相似文献   

16.
17.
Swiss-3T3 cells were scrape-loaded with oncogenically activated p21ras protein. 10-20 min after introducing Val12p21ras into the cell, diacylglycerol levels were increased, but levels of inositol phosphates were unaltered. However, cellular choline and phosphocholine levels were increased with a similar time course to that observed for diacylglycerol production, suggesting that ras increases phosphatidylcholine turnover but not phosphatidylinositol turnover. Down-regulation of protein kinase C (by prolonged exposure to phorbol esters prior to scrape loading) blocked the ability of ras protein to elevate the levels of diacylglycerol, choline, and phosphocholine. Oncogenic ras can, therefore, cause a substantial increase in diacylglycerol (which correlates with increased phosphatidylcholine breakdown) in a protein kinase C-dependent fashion. Val12p21ras also increased arachidonic acid release, which was also dependent on protein kinase C activation. Induction of DNA synthesis by oncogenic ras was unaffected by inhibitors of prostaglandin synthesis, indicating that conversion of the released arachidonic acid to various prostaglandins is not required for stimulation of DNA synthesis by ras. We suggest that ras rapidly activates protein kinase C, which in turn activates a number of cellular signalling systems, leading to a sustained increase in diacylglycerol levels. This elevation of diacylglycerol could sustain protein kinase C activation over the 12-15 h required for initiation of DNA synthesis.  相似文献   

18.
The effects of cholecystokinin (CCK) and other pancreatic secretagogues on phosphatidylcholine (PC) synthesis were studied in isolated rat pancreatic acini. When acini were incubated with [3H]choline in the presence of 1 nM CCK-octapeptide (CCK8) for 60 min, the incorporations of [3H]choline into both water-soluble choline metabolites and PC in acini were reduced by CCK8 to 74 and 41% of control, respectively. Pulse-chase study revealed that CCK8 reduced both the disappearance of phosphocholine and the synthesis of PC. Other Ca(2+)-mobilizing secretagogues such as carbamylcholine, bombesin, and Ca2+ ionophore A23187 also reduced PC synthesis to the same extent as did CCK8. When combined with 1 nM CCK8, A23187 or carbamylcholine did not further inhibit PC synthesis. Furthermore, W-7 or W-5, a calmodulin antagonist, reversed the inhibition by CCK8 of PC synthesis, suggesting that a Ca(2+)-calmodulin-dependent pathway may be involved in CCK-induced inhibition of PC synthesis in acini. By contrast, neither cAMP-dependent secretagogues such as secretin and dibutyryl cAMP nor a phorbol ester had any effect on PC synthesis in acini. Staurosporine or H-7, a protein kinase C inhibitor, did not affect the inhibition by CCK of PC synthesis. The analysis of enzyme activity involved in PC synthesis via CDP-choline pathway showed that CCK treatment of acini reduced CTP:phosphocholine cytidylyltransferase activity in both cytosolic and particulate fraction, a finding consistent with the delayed disappearance of phosphocholine induced by CCK in pulse-chase study. By contrast, CCK treatment of acini did not alter the activities of choline kinase and phosphocholine transferase in acini. The extent of inhibition by CCK of cytidylyltransferase activity became much larger when subcellular fractions of acini were prepared in the presence of phosphatase inhibitors. In addition, W-7 reversed the inhibitory effect of CCK treatment on cytidylyltransferase activity in acini. When acini were labeled with [3H]myristic acid and chased, CCK8 (1 nM) reduced the synthesis of [3H]myristic acid-labeled PC to 27% of control after a 60-min chase period. This inhibition of PC synthesis induced by CCK was accompanied by a delayed disappearance of [3H]diacylglycerol, the radioactivity of which was 225% of control at 60 min. These results indicate that CCK inhibits PC synthesis by inducing both the reduction of choline uptake into acini and the inhibition of CTP:phosphocholine cytidylyltransferase activity. Furthermore, the results suggest the possibility that the activation of Ca(2+)-calmodulin-dependent kinase in response to CCK may phosphorylate cytidylyltransferase thereby decreasing this enzyme activity in pancreatic acinar cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Insulin was found to provoke simultaneous, rapid, biphasic increases in [3H]choline-labeling of phosphatidylcholine and phosphocholine in BC3H-1 myocytes. Phorbol esters increased [3H]choline-labeling of phosphocholine, but not phosphatidylcholine. Both agonists increased diacylglycerol production. These results suggest that: (a) insulin provokes coordinated increases in the synthesis and hydrolysis of PC; and, (b) insulin-induced activation of protein kinase C may activate a PC-specific phospholipase.  相似文献   

20.
Vasopressin stimulates phosphatidylcholine hydrolysis in REF52 cells, and this phosphatidylcholine hydrolysis results in increases in choline containing metabolites in the culture medium (2.3 x control levels) and accumulation of cellular diacylglycerol (6.5 x control levels). Vasopressin is the only component of a 6-component mixture of the serum-free medium for REF52 cells that induces the phosphatidylcholine hydrolysis response. The effect of vasopressin is both time- and concentration-dependent. Maximal levels of both phosphatidyl-choline hydrolysis and accumulation of diacylglycerol are observed between 10 and 20 min after treatment with vasopressin. Effects are maximal at vasopressin concentrations of 100 ng/ml; the ED50 for vasopressin-stimulated phosphatidyl-choline hydrolysis is approximately 0.7 ng/ml. The evolution of diacylglycerol occurs in a time frame that is consistent with the diacylglycerol activating protein kinase C in a "second phase" agonist response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号