首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
v-Src-induced increases in diglyceride are derived from phosphatidylcholine via a type D phospholipase (PLD) and a phosphatidic acid phosphatase. v-Src-induced PLD activity, as measured by PLD-catalyzed transphosphatidylation of phosphatidylcholine to phosphatidylethanol, is inhibited by GDP beta S, which inhibits G-protein-mediated intracellular signals. Similarly, v-Src-induced increases in diglyceride are also blocked by GDP beta S. In contrast to the PLD activity induced by v-Src, PLD activity induced by the protein kinase C agonist, 12-O-tetradecanoylphorbol-13-acetate (TPA), was insensitive to GDP beta S. Consistent with the involvement of a G protein in the activation of PLD activity by v-Src, GTP gamma S, a nonhydrolyzable analog of GTP that potentiates G-protein-mediated signals, strongly enhanced PLD activity in v-Src-transformed cells relative to that in parental BALB/c 3T3 cells. The effect of GTP gamma S on PLD activity in v-Src-transformed cells was observed only when cells were prelabeled with [3H]myristate, which is incorporated exclusively into phosphatidylcholine, the substrate for the v-Src-induced PLD. There was no difference in the effect of GTP gamma S-induced PLD activity on v-Src-transformed and BALB/c 3T3 cells when the cells were prelabeled with [3H]arachidonate, which is not incorporated into phospholipids that are substrates for the v-Src-induced PLD. Similarly, GDP beta S inhibited PLD activity in v-Src-transformed cells much more strongly than in BALB/c 3T3 cells when [3H]myristate was used to prelabel the cells. The GTP-dependent activation of PLD by v-Src was dependent upon the presence of ATP but was unaffected by either cholera or pertussis toxin. These data suggest that v-Src induces PLD activity through a phosphorylation event and is mediated by a cholera and pertussis toxin-insensitive G protein.  相似文献   

2.
The mechanism of phosphatidylcholine (PC) degradation stimulated by phorbol myristate acetate (PMA) was investigated in bovine pulmonary artery endothelial cells prelabeled with [methyl-3H]choline ([3H]choline) or [9,10-3H]myristic acid ([3H]myristic acid). Both labels were selectively incorporated into PC, and addition of PMA stimulated comparable losses of 3H from PC in cells prelabeled with [3H]choline or [3H]myristate. In cells prelabeled with [3H]choline, the loss of 3H from PC correlated with a rapid increase in intracellular free [3H]choline. The increase in intracellular [3H]choline stimulated by PMA was not preceded by an increase in any other 3H-labeled PC degradation product. PMA did not stimulate the formation of PC deacylation products in cells prelabeled with [3H]choline. In permeabilized cells prelabeled with [3H]choline, PMA stimulated the formation of [3H]choline but not [3H]phosphocholine. In intact cells prelabeled with [3H]myristate, the loss of 3H from PC induced by PMA correlated with the formation of [3H]phosphatidic acid ([3H]PA) and [3H]diacylglycerol. In the presence of ethanol, PMA stimulated the formation of [3H]phosphatidylethanol ([3H]PEt) at the expense of [3H]PA. The time-course of [3H]PEt formation was similar to the time-course of intracellular [3H]choline formation in cells stimulated with PMA. These data taken together support the notion that PC degradation in endothelial cells stimulated with PMA is mediated principally by phospholipase D. PC breakdown via phospholipase D was not observed in cells treated with phorbol esters incapable of interacting with protein kinase C. Activation of phospholipase D by phorbol esters was inhibited by long-term pretreatment of cells with PMA to down-regulate protein kinase C and by pretreatment of the cells with staurosporine. These data support the notion that activation of phospholipase D by phorbol esters is dependent upon protein kinase C.  相似文献   

3.
The current studies explore the role of phospholipase D (PLD) in mast cell activation. Although most investigators believe that receptor-mediated accumulation of 1,2-diacylglycerol (DAG) occurs by phospholipase C hydrolysis of phosphoinositides, our previous work indicated a modest role for these substrates and suggested that phosphatidylcholine (PC) is the more likely substrate. PLD cleaves the terminal phosphodiester bond of phospholipids to yield phosphatidic acid (PA), but in the presence of ethanol, it transfers the phosphatidyl moiety of the phospholipid substrate to ethanol producing phosphatidylethanol (PEt); a reaction termed transphosphatidylation. In purified rat mast cells prelabeled with [3H]arachidonic acid, [3H]palmitic acid, or 1-O-[3H]alkyl-lysoPC, a receptor-associated increase in PLD activity was initially suggested by the rapid accumulation of labeled PA, although other mechanisms might be involved. PLD activity was assessed more directly by the production of labeled PEt by PLD-mediated transphosphatidylation in the presence of ethanol. IgE receptor cross-linking resulted in a 3- to 10-fold increase in PLD activity during the 10 min after stimulation, approximately 50% of which occurred during the first two min. PEt formation was dependent on the concentration of ethanol and was maximal at 0.5%. At concentrations of ethanol greater than or equal to 0.2%, receptor-dependent formation of PA was reduced suggesting that the ethanol promoted transphosphatidylation at the expense of hydrolysis. The dose-related decline in PA accumulation seen in the presence of ethanol was similar to ethanol-mediated inhibition of exocytosis suggesting that receptor-mediated PA formation may be of regulatory importance. These observations indicate that PLD-mediated formation of PA occurs in stimulated mast cells and, in conjunction with separate findings of PA phosphohydrolase conversion of PA to DAG in mast cells, suggest that a major mechanism of DAG formation during mast cell activation is PC----PA----DAG.  相似文献   

4.
In mouse neuroblastoma N18TG2 cells prelabeled with [3H]arachidonic acid ([3H]AA) the biosynthesis of 2-arachidonoylglycerol (2-AG) is induced by ionomycin in a fashion sensitive to an inhibitor of diacylglycerol (DAG) lipase, RHC 80267, but not to four different phospholipase C (PLC) blockers. Pulse experiments with [3H]AA showed that ionomycin stimulation leads to the sequential formation of [3H]phosphatidic acid ([3H]PA), [3H]DAG, and [3H]2-AG. [3H]2-AG biosynthesis in N18TG2 cells prelabeled with [3H]AA was counteracted by propranolol and N-ethylmaleimide, two inhibitors of the Mg2+/Ca2(+)-dependent brain PA phosphohydrolase. Pretreatment of cells with exogenous phospholipase D (PLD) led to a strong potentiation of ionomycin-induced [3H]2-AG formation. These data indicate that DAG precursors for 2-AG in intact N18TG2 cells are obtained from the hydrolysis of PA and not through the activation of PLC. The presence of 2% ethanol during ionomycin stimulation failed to elicit the synthesis of [3H]phosphatidylethanol and did not counteract the formation of [3H]PA, thus arguing against the activation of PLD by the Ca2+ ionophore. Selective inhibitors of secretory phospholipase A2 and the acyl-CoA acylase inhibitor thimerosal significantly reduced [3H]2-AG biosynthesis. The implications of these latter findings, and of the PA-dependent pathways of 2-AG formation described here, are discussed.  相似文献   

5.
Cultured fibroblasts (REF52 cells) were employed to investigate phospholipid degradation in response to vasopressin (VP) treatment. There have been few studies in fibroblasts which characterize the pattern and relationship of phosphatidylinositol 4,5-bisphosphate (PIP2) and non-phosphoinositide hydrolysis elicited by VP. Here we demonstrate that VP-induced PIP2 hydrolysis is closely accompanied by phosphatidylcholine (PC) degradation by phospholipase D. Cells prelabeled with [3H]arachidonic acid showed rapid formation and diminution of [3H]diacylglycerol (DG) (5-15s) when treated with VP; this was accompanied by a reduction in polyphosphoinositide radioactivity. Radiolabeled inositol trisphosphate was generated with a similar time frame. In cells prelabeled with [3H]myristic acid, which is predominantly incorporated into cellular PC, VP elicited the generation of [3H]myristoyl phosphatidate (PA) as early as 15 s, in the absence of an increase in labeled DG. In the presence of ethanol the pattern of [3H]myristoyl phosphatidylethanol (PEt) formation coincided with [3H]myristoyl-PA formation in the absence of ethanol. PEt was similarly formed, in response to VP treatment, in cells prelabeled with 1-O-[3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine. The formation of PC-derived [3H]myristoyl-DG was characterized by a lag period of approximately 1 min, after which DG increased steadily over a 10-min period. Biphasic formation of DG was observed in cells prelabeled with [3H]arachidonic acid, and the formation of [3H]PA occurred in an uninterrupted fashion. Two protein kinase C agonists, phorbol diester and dioctanoylglycerol, elicited the formation of [3H]myristoyl-PEt. The inclusion of staurosporine, a protein kinase C inhibitor, blocked VP-induced [3H]myristoyl-PEt formation by 88%. These data demonstrate that VP elicits the coordinated hydrolysis of PIP2 by phospholipase C and PC hydrolysis by phospholipase D. This event results in the prolonged generation of PA and biphasic formation of DG. From the time courses shown, we hypothesize that the early generation of PA, heretofore ascribed to products of the polyphosphoinositide cycle, are in part derived from PC by phospholipase D.  相似文献   

6.
Angiotensin (Ang) II acts as a mitogen in vascular smooth muscle cells (VSMC) via the activation of multiple signaling cascades, including phospholipase C, tyrosine kinase, and mitogen-activated protein kinase pathways. However, increasing evidence supports signal-activated phospholipases A(2) and D (PLD) as additional mechanisms. Stimulation of PLD results in phosphatidic acid (PA) formation, and PA has been linked to cell growth. However, the direct involvement of PA or its metabolite diacylglycerol (DAG) in Ang II-induced growth is unclear. PLD activity was measured in cultured rat VSMC prelabeled with [(3)H]oleic acid, while the incorporation of [(3)H]thymidine was used to monitor growth. We have previously reported the Ang II-dependent, AT(1)-coupled stimulation of PLD and growth in VSMC. Here, we show that Ang II (100 nM) and exogenous PLD (0.1-100 units/mL; Streptomyces chromofuscus) stimulated thymidine incorporation (43-208% above control). PA (100 nM-1 microM) also increased thymidine incorporation to 135% of control. Propranolol (100 nM-10 microM), which inhibits PA phosphohydrolase, blocked the growth stimulated by Ang II, PLD, or PA by as much as 95%, an effect not shared by other beta-adrenergic antagonists. Propranolol also increased the production of PA in the presence of Ang II by 320% and reduced DAG and arachidonic acid (AA) accumulation. The DAG lipase inhibitor RHC-80267 (1-10 microM) increased Ang II-induced DAG production, while attenuating thymidine incorporation and release of AA. Thus, it appears that activation of PLD, formation of PA, conversion of PA to DAG, and metabolism of DAG comprise an important signaling cascade in Ang II-induced growth of VSMC.  相似文献   

7.
We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of [3H]choline and [3H]phosphorylcholine ([3H]Pchol) from cells containing [3H]choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of [3H]phosphatidic acid ([3H]PA) in cells containing [3H]myristate-labeled PC. [3H]Diacylglycerol ([3H]DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with [3H]myristate and [14C]arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol. By analyzing the increase in 3H versus 14C in DAG, we estimate that the DAG that is formed in response to PMA arises largely from PC. Muscarinic receptor activation also causes formation of DAG from PC, but approximately 20% of carbachol-stimulated DAG appears to arise from hydrolysis of the phosphoinositides.  相似文献   

8.
Effects of ACTH on the production of diacylglycerol (DAG) and translocation of protein kinase C were studied in primary cultures of calf adrenal glomerulosa cells. To study DAG production two different labeling protocols were used: (a) cells were prelabeled for 3 days with [2-3H]glycerol before ACTH addition; (b) ACTH and [2-3 H]glycerol were added simultaneously to cells. In both cases, ACTH provoked rapid increases in the labeling of DAG which were maximal in 2 min, dose-dependent, and paralleled by increases in DAG mass. ACTH also increased the labeling of total glycerolipids including phosphatidic acid (PA), phosphatidylinositol, phosphatidylethanolamine, phosphatidylcholine and triacylglycerol. In both labeling protocols, the rates of increase in the labeling of DAG and PA were greater than those of other glycerolipids. Our results indicate that ACTH rapidly increases DAG, at least partly by stimulating the de novo synthesis of PA. In addition, we found that ACTH, like phorbol esters, stimulated the apparent translocation of immunoreactive protein kinase C from the cytosol to the membrane fraction.  相似文献   

9.
The mechanism of action by which insulin increases phosphatidic acid (PA) and diacylglycerol (DAG) levels was investigated in cultured hepatoma cells (HEPG2). Insulin stimulated phosphatidylcholine (PC) and phosphatidyl-inositol (PI) degradation through the activation of specific phospholipases C (PLC). The DAG increase appears to be biphasic. The early DAG production seems to be due to PI breakdown, probably through phosphatidyl-inositol-3-kinase (PI3K) involvement, whereas the delayed DAG increase is derived directly from the PC-PLC activity. The absence of phospholipase D (PLD) involvement was confirmed by the lack of PC-derived phosphatidylethanol production. Experiments performed in the presence of R59022, an inhibitor of DAG-kinase, indicated that PA release is the result of the DAG-kinase activity on the DAG produced in the early phase of insulin action.  相似文献   

10.
Phosphatidic acid (PA) and its phosphorylated derivative diacylglycerol pyrophosphate (DGPP) are lipid molecules that have been implicated in plant cell signaling. In this study we report the rapid but transient accumulation of PA and DGPP in suspension-cultured tomato (Lycopersicon esculentum) cells treated with the general elicitors, N,N',N",N"'-tetraacetylchitotetraose, xylanase, and the flagellin-derived peptide flg22. To determine whether PA originated from the activation of phospholipase D or from the phosphorylation of diacylglycerol (DAG) by DAG kinase, a strategy involving differential radiolabeling with [(32)P]orthophosphate was used. DAG kinase was found to be the dominant producer of PA that was subsequently metabolized to DGPP. A minor but significant role for phospholipase D could only be detected when xylanase was used as elicitor. Since PA formation was correlated with the high turnover of polyphosphoinositides, we hypothesize that elicitor treatment activates phospholipase C to produce DAG, which in turn acts as substrate for DAG kinase. The potential roles of PA and DGPP in plant defense signaling are discussed.  相似文献   

11.
The conversion of phosphatidylcholine (PC) to diacylglycerol (DAG) was studied in sonicated endothelial cells and in subcellular fractions in the presence of 0.05% Triton X-100 and 2 mM EDTA. DAG formation occurred predominantly in an organelle fraction that sedimented at 15,000 x g. In parallel reactions with exogenous 1-oleoyl-2-[3H]oleoyl-PC (sn-2-[3H]DOPC) and phosphatidyl[3H]choline ([choline-3H]PC), [3H]DAG was formed by a reaction pathway in which [3H]choline was the only product derived from [choline-3H]PC. [3H]Choline was not formed secondarily from [3H]glycerophosphocholine or [3H]phosphocholine. Small amounts of [3H]phosphatidate ([3H]PA) were isolated from reactions with sn-2-[3H]DOPC at short incubation times, and substantial PA phosphatase activity was demonstrated. These data, taken together, supported a phospholipase D-PA phosphatase pathway of DAG formation. Kinetic data established that the low ratio of [3H]PA/[3H]DAG formed in reactions with sn-2-[3H]DOPC was due to a 15-fold higher Vmax and 7-fold lower apparent Km of the PA phosphatase. The [3H]PA/[3H]DAG product ratio was increased by addition of unlabeled PA or by selective extraction of phospholipase D with Triton X-100. The characteristics of the phospholipase D indicated a unique enzyme. Activity was optimal in the presence of EDTA and was almost totally dependent upon Triton X-100. The pH profile displayed a peak at 7.0. Of particular significance was the stringent substrate specificity. Phosphatidylinositol was not hydrolyzed, and activities towards phosphatidylethanolamine and sphingomyelin were at most 30- to 50-fold lower than those towards PC. Phospholipase D and PA phosphatase were identified in a number of rat tissues and other cells. The highest activities of phospholipase D were present in lung and endothelial cells. Phospholipase D was partially purified from rat lung by Triton X-100 extraction and anion exchange chromatography. When linked with PA phosphatase, the phospholipase D could initiate a pathway of DAG formation that is highly specific for PC.  相似文献   

12.
R H Foster  R V Farese 《Life sciences》1989,45(21):2015-2023
Effects of angiotensin II (AII) on diacylglycerol (DAG) synthesis were examined in calf adrenal glomerulosa cells. AII provoked rapid increases in [3H]glycerol-labeling and content of DAG. Effects on [3H]glycerol-labeling of DAG were observed both in cells prelabeled with [3H]glycerol for 60 minutes, and when AII and [3H]glycerol were added simultaneously. Increases in [3H] DAG labeling were associated with increases in total glycerolipid labeling, and in simultaneous addition experiments, were preceded by increased [3H] phosphatidic acid (PA) labeling. Labeling of glycerol-3-PO4, on the other hand, was not increased by AII, suggesting that increases in lipid labeling were not due to prior increases in precursor specific activity. ACTH, which does not increase the hydrolysis of inositol-phospholipids appreciably in this tissue, provoked increases in content and [3H]glycerol-labeling of DAG, which were only slightly less than those provoked by AII. Thus, part of the AII-induced increase in DAG may also be derived from sources other than inositol-phospholipids. Moreover, AII-induced increases in DAG appear to be at least partly derived from increased de novo synthesis of PA.  相似文献   

13.
Zhou BH  Chen JS  Chai MQ  Zhao S  Liang J  Chen HH  Song JG 《Cell research》2000,10(2):139-149
Cells regulate phospholipase D(PLD) activity in response to numerous extracellular signals.Here,we investigated the involvement of PLD activity in transforming growth factor-β(TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1 inhibits the growth of MDCK,Mv1Lu,and A-549 cells.In the presence of 0.4% butanol,TGF-β1 induces an increase in the formation of phosphatidylbutanol,a unique product catalyzed by PLD.TGF-β1 also induces an increase in phosphatidic acid (PA) level in A-549 and MDCK cells.TGF-β1 induces an increase in the levels of DAG labeled with [^3H]-myristic acid in A-549 and MDCK cells but not in Mv1Lu cells.No increase of DAG was observed in cells prelabeled with [^3H]-arachidonic acid.The data presented suggest that PLD activation is involved in the TGF-β1-induced cell growth inhibition.  相似文献   

14.
v-Src-induced oncogenic transformation is characterized by alterations in cell morphology, adhesion, motility, survival, and proliferation. To further elucidate some of the signaling pathways downstream of v-Src that are responsible for the transformed cell phenotype, we have investigated the role that the calpain-calpastatin proteolytic system plays during oncogenic transformation induced by v-Src. We recently reported that v-Src-induced transformation of chicken embryo fibroblasts is accompanied by calpain-mediated proteolytic cleavage of the focal adhesion kinase (FAK) and disassembly of the focal adhesion complex. In this study we have characterized a positive feedback loop whereby activation of v-Src increases protein synthesis of calpain II, resulting in degradation of its endogenous inhibitor calpastatin. Reconstitution of calpastatin levels by overexpression of exogenous calpastatin suppresses proteolytic cleavage of FAK, morphological transformation, and anchorage-independent growth. Furthermore, calpastatin overexpression represses progression of v-Src-transformed cells through the G(1) stage of the cell cycle, which correlates with decreased pRb phosphorylation and decreased levels of cyclins A and D and cyclin-dependent kinase 2. Calpain 4 knockout fibroblasts also exhibit impaired v-Src-induced morphological transformation and anchorage-independent growth. Thus, modulation of the calpain-calpastatin proteolytic system plays an important role in focal adhesion disassembly, morphological transformation, and cell cycle progression during v-Src-induced cell transformation.  相似文献   

15.
Agonist-induced degradation of phosphatidylcholine (PC) is of interest as this pathway of diacylglycerol (DG) generation may provide added opportunities for the regulation of protein kinase C (PKC). In REF52 cells [3H]myristic acid is preferentially incorporated into PC; this, coupled with the use of [3H]choline, allows for quantitation of both the water-soluble and the lipid products generated when PC is degraded. In cells prelabeled with [3H]choline, TPA stimulated a time-dependent release, into the medium, of choline and not phosphocholine or glycerophosphocholine. Treatment of [3H]myristic acid-labeled cells with either phorbol diesters, sn-1,2-dioctanoylglycerol, or vasopressin elicited the formation of labeled phosphatidate (PA) and DG. The temporal pattern of PC hydrolysis in cells treated with TPA is indicative of a precursor (PA)-product (DG) relationship for an enzymatic sequence initiated by phospholipase D. Adding propranolol, a phosphatidate phosphohydrolase inhibitor, eliminated TPA-induced DG formation, whereas PA generation was unaffected. From these data we conclude that TPA elicits DG formation from PC by the sequential actions of phospholipase D and phosphatidate phosphohydrolase.  相似文献   

16.
Rat pancreatic acinar cells prelabeled with [14C]palmitic acid and then exposed to carbachol (CCh) exhibited a time-dependent increase in 1,2-[14C]diacylglycerol ([14C]DAG) levels, which was first detected at 2 min and then continued to rise in a linear manner. There was a concomitant increase in [14C]phosphatidic acid, which plateaued after 2 min and then remained at steady-state levels. CCh also promoted the release of phosphocholine, but not choline, within 60 s and caused a decrease in [14C]phosphatidylcholine in cells prelabeled with [14C]glycerol after 15 min. The inability to detect a rise in [14C]phosphatidylethanol accumulation and a fall in [14C]phosphatidate levels in [14C]palmitate prelabeled cells after exposure to CCh plus ethanol documented the absence of a phospholipase D-mediated pathway. The rapid phosphorylation of diglyceride in homogenates from unstimulated and carbachol-treated cells increased with increasing concentrations of exogenous substrate, thereby affirming that carbachol stimulates the phosphorylation of DAG by promoting the accumulation of the diglyceride. These collective findings provide evidence for the existence of an integrative control mechanism for regulating endogenous DAG levels during pancreatic acinar cell activation involving phosphatidylcholine-specific phospholipase C and DAG kinase.  相似文献   

17.
Phospholipase D (PLD), a phospholipid phosphohydrolase, catalyzes the hydrolysis of phosphatidylcholine and other membrane phospholipids to phosphatidic acid (PA) and choline. PLD, ubiquitous in mammals, is a critical enzyme in intracellular signal transduction. PA generated by agonist- or reactive oxygen species (ROS)-mediated activation of the PLDI and PLD2 isoforms can be subsequently converted to lysoPA (LPA) or diacylglycerol (DAG) by phospholipase A1/A2 or lipid phosphate phosphatases. In pulmonary epithelial and vascular endothelial cells, a wide variety of agonists stimulate PLD and involve Src kinases, p-38 mitogen activated protein kinase, calcium and small G proteins. PA derived from the PLD pathway has second-messenger functions. In endothelial cells, PA regulates NAD[P]H oxidase activity and barrier function. In airway epithelial cells, sphingosine-1-phosphate and PA-induced IL-8 secretion and ERKI/2 phosphorylation is regulated by PA. PA can be metabolized to LPA and DAG, which function as first- and second-messengers, respectively. Signaling enzymes such as Raf 1, protein kinase Czeta and type I phosphatidylinositol-4-phosphate 5-kinase are also regulated by PA in mammalian cells. Thus, PA and its metabolic products play a central role in modulating endothelial and epithelial cell functions.  相似文献   

18.
19.
Mechanisms involved in regulating the activity of intracellular phospholipase A2 enzymes that function in eicosanoid and platelet-activating factor production are poorly understood. The properties of the substrate in the membrane may play a role in modulating phospholipase A2 activity. In this study, the effect of anionic phospholipids, diacylglycerol (DAG) and phosphatidylethanolamine (PE) on the activity of a partially purified, intracellular, arachidonoyl-hydrolyzing phospholipase A2 from the macrophage cell line, RAW 264.7 was studied. For these experiments phospholipase A2 activity was assayed in the presence of 1 microM calcium by measuring the hydrolysis of [3H]arachidonic acid from sonicated dispersions of the ether-linked substrate, 1-O-hexadecyl-2[3H]arachidonoylglycerophosphocholine. All the anionic phospholipids tested, including phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylinositol (PI) and phosphatidylinositol-4,5-bisphosphate (PIP2), stimulated phospholipase A2 activity. At the lowest concentration of anionic phospholipids tested. PIP2 was the most stimulatory, resulting in a 7-fold increase in phospholipase A2 activity at 1 mol%. Co-dispersion of either DAG or PE with the substrate also induced a dose-dependent increase in phospholipase A2 activity, whereas sphingomyelin was inhibitory suggesting that the phospholipase A2 more readily hydrolyzed the ether-linked substrate when there was a decrease in the packing density of the bilayer. PIP2, together with either DAG or PE, synergistically stimulated phospholipase A2 activity by about 20-fold, and dramatically decreased the calcium concentration (from mM to nM) required for full activity of the enzyme. The results of this study demonstrate that the presence of anionic phospholipids and the packing characteristics of the bilayer can have pronounced effects on the activity and calcium requirement of an intracellular, arachidonoyl-hydrolyzing phospholipase A2 from macrophages.  相似文献   

20.
Farnesol is a catabolite of the cholesterol biosynthetic pathway that preferentially causes apoptosis in tumorigenic cells. Phosphatidylcholine (PC), phosphatidic acid (PA), and diacylglycerol (DAG) were able to prevent induction of apoptosis by farnesol. Primary alcohol inhibition of PC catabolism by phospholipase D augmented farnesol-induced apoptosis. Exogenous PC was unable to prevent the increase in farnesol-induced apoptosis by primary alcohols, whereas DAG was protective. Farnesol-mediated apoptosis was prevented by transformation with a plasmid coding for the PA phosphatase LPP3, but not by an inactive LPP3 point mutant. Farnesol did not directly inhibit LPP3 PA phosphatase enzyme activity in an in vitro mixed micelle assay. We propose that farnesol inhibits the action of a DAG pool generated by phospholipase D signal transduction that normally activates an antiapoptotic/pro-proliferative target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号