首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background The aim of this investigation was to demonstrate that benzyloxicarbonyl-l-phenylalanyl-alanine-fluoromethylketone (Z-FA.FMK), which is a pharmacological inhibitor of cathepsin B, has protective role on the kidney injury that occurs together with liver injury. Methods BALB/c male mice used in this study were divided into four groups. The first group was given physiologic saline only, the second group was administered Z-FA.FMK alone, the third group received d-galactosamine and tumor necrosis factor-alpha (d-GalN/TNF-α), and the fourth group was given both d-GalN/TNF-α and Z-FA.FMK. One hour after administration of 8 mg/kg Z-FA.FMK by intravenous injection, d-GalN (700 mg/kg) and TNF-α (15 μg/kg) were given by intraperitoneal injection. Results In the group given d-GalN/TNF-α, the following results were found: severe degenerative morphological changes in the kidney tissue, a significant increase in the number of activated caspase-3-positive tubular epithelial cell, an insignificant increase in the number of proliferating cell nuclear antigen (PCNA)-positive tubular epithelial cell, a decrease in the kidney glutathione (GSH) levels, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, an increase in the kidney lipid peroxidation (LPO) levels, lactate dehydrogenase (LDH) activity, serum aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activities, uric acid and urea levels. In contrast, in the group given d-GalN/TNF-α and Z-FA.FMK, a significant decrease in the d-GalN/TNF-α-induced degenerative changes, a decrease in the number of activated caspase-3-positive tubular epithelial cell, a insignificant decrease in the number of PCNA-positive tubular epithelial cell, an increase in the kidney GSH levels, CAT, SOD and GPx activities, a decrease in the kidney LPO levels, LDH activity, serum AST and ALT activities, uric acid and urea levels were determined. Conclusion These results suggest that pretreatment with Z-FA.FMK markedly lessens the degree of impairment seen in d-GalN/TNF-α-induced kidney injury, which occurred together with liver injury in mice.  相似文献   

2.
Summary The fine structure of Crystallolithus hyalinus (Gaarder and Markali), known to be the motile stage of Coccolithus pelagicus (Wallich) Schiller (Parke and Adams 1960), has been investigated for purposes of comparison with Chrysochromulina and Prymnesium, recently recognised as probably related to it. Anoptral contrast light microscopy of living cells and electron microscopy of thin sections and shadow-cast whole mounts show that there is a close resemblance to species of Chrysochromulina not only in cell structure but also in the details of haptonema structure and scale structure. The origin of the scales from internal vesicles has been traced as in other genera but the holococcoliths (crystalloliths) do not appear to arise in this way. The mode of origin of the crystalloliths is thus unknown, but it is suggested that they may be developed outside the cell from calcite secreted in solution into the appropriate cavity. Their constant position between a layer of scales and an outer enveloping skin is consistent with this and one unfamiliar cytoplasmic organelle, composed of peculiar thick-walled tubes within some large superficial vesicles, is described as perhaps involved in this process. Apart from these special features the resemblance to both Chrysochromulina and Prymnesium is sufficient to add considerable weight to Christensen's suggestion (Christensen 1962) that a new group should be defined to accommodate these genera.  相似文献   

3.
A study was undertaken to explore the effect of l-DOPA (l-3,4-dihydroxyphenylalanine) on the rooting potential of hypocotyl cuttings of mung bean (Phaseolus aureus Roxb. var. SML-32) and related biochemical changes at the post-expression phase. At lower concentrations of (0.0001–0.1 mM) l-DOPA, there was no change in rooting potential, though the average number of roots per cutting and root length were significantly decreased (except at 0.0001 mM). However, at 1.0 mM concentration, a 50% inhibition in rooting potential was noticed and the root number and length were severely reduced. In contrast, at 2.5 mM l-DOPA, none of the hypocotyl cutting rooted. The decrease in rooting potential was associated with a significant effect on the biochemical changes measured in terms of protein and carbohydrate metabolism and activity of peroxidases. In the l-DOPA treated hypocotyl cuttings, there was a significant reduction in the protein and carbohydrate content, whereas activities of associated enzymes proteases and amylases decreased, particularly at higher treatment concentration (>1.0 mM). It indicated negative effect of l-DOPA on these two important metabolic processes. Likewise, activity of peroxidases also decreased in the l-DOPA treated hypocotyl mung bean cuttings thereby indicating its role in suppressing rhizogenesis as the enzyme is involved in lignification process during cell division. l-DOPA suppressed mitotic activity in the root tip cells of onion indicating thereby its interference with the cell division, which is required for the formation of new meristematic tissue during rhizogenesis. Based on the obtained results, it is concluded that l-DOPA interferes with the various biochemical processes in the mung bean hypocotyl cuttings thereby affecting their rooting potential.  相似文献   

4.
d-Arabitol production from lactose by Kluyveromyces lactis NBRC 1903 has been studied by following the time courses of concentrations of cell mass, lactose, d-arabitol, ethanol, and glycerol at different temperatures. It was found that temperature is a key factor in d-arabitol production. Within temperatures ranging from 25 to 39°C, the highest d-arabitol concentration of 99.2 mmol l−1 was obtained from 555 mmol l−1 of lactose after 120 h of batch cultivation at 37°C. The yield of d-arabitol production on cell mass growth increased drastically at temperatures higher than 35°C, and the yield reached 1.07 at 39°C. Increasing the cell mass concentration two-fold after 24 h of culture growth at 37°C, the d-arabitol concentration further increased to 168 mmol l−1. According to the distribution of the metabolic products, metabolic changes related to growth phase were also discussed. The stationary-phase K. lactis cells in the batch culture that is started with exposing the precultured inoculum to high osmotic stress, high oxidative stress, and high heat stress are found to be preferable for d-arabitol production.  相似文献   

5.
Summary We report the kinetics of endogenous l-valine in the fungus Tolypocladium inflatum, in an effort to understand the enhancing effect of externally supplemented l-valine on the production of the immunosuppressant cyclosporin A (CyA) in chemically defined medium. In a batch laboratory stirred reactor cultivation, the concentration of intracellular l-valine increased by up to four times between the end of the exponential phase and the beginning of the stationary phase when the medium was supplemented externally with 4 g/1 l-valine. The final CyA titre under these conditions was 710 mg/1 compared to only 130 mg/1 attained without l-valine supplementation. In contrast to substantial growth-associated production of CyA in unsupplemented culture, the formation of the immunosuppressant was prolonged during the stationary phase in l-valine-supplemented medium. As a result, the conversion yield of CyA on l-valine remained constant during the stationary phase at 0.27 g CyA/g l-valine.  相似文献   

6.
Evelyn A. Havir 《Planta》1981,152(2):124-130
Suspension-cultured cells of soybean (Glycine max (L.) Merr. cv. Kanrich) produce large amounts of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), the first enzyme of phenylpropanoid metabolism, during growth. 2-Aminooxyacetic acid (AOA) and l-2-aminooxy-3-phenylpropionic acid (l-AOPP) inhibit the enzyme competitively in vitro and have been used for in vivo studies. The amount of extractable enzyme in the cells and their utilization of NO 3 and NH 3 + are reduced upon the addition of AOA. When AOA was added at various times during growth, the appearance of additional enzyme activity was prevented but enzyme already formed was not inhibited. No evidence was obtained for the presence of an inhibitor in the extracts and AOA inhibition in vitro was readily reversible. It is conculded that AOA acts to inhibit the formation of PAL in suspension-cultured soy bean cells. In vitro inhibition of soybean PAL by l-AOPP could not be reversed; in contrast, the inhibition of maize (Zea mays L.) PAL was readily reversible. Added l-AOPP, which was rapidly taken up by the soybean cells, prevented the large increase in enzyme activity. Although PAL activity was blocked in the cultures, no appreciable increase in phenylalanine content could be detected in cell extracts. The response of soybean cell suspensions to l-AOPP addition thus differs from that of other tissues which in presence of l-AOPP show an increase in PAL activity and an accumulation of phenylalanine.Abbreviations AOA 2-aminooxyacetic acid - l-AOPP l-2-aminoxy-3-phenylpropionic acid - PAL l-phenylalanine ammonialyase (EC4.3.1.5)  相似文献   

7.
Background Hyperhomocysteinaemia (HHC) is thought to be a risk factor for cardiovascular disease including heart failure. While numerous studies have analyzed the role of homocysteine (Hcy) in the vasculature, only a few studies investigated the role of Hcy in the heart. Therefore we have analyzed the effects of Hcy on isolated cardiomyocytes. Methods H9c2 cells (rat cardiomyoblast cells) and adult rat cardiomyocytes were incubated with Hcy and were analyzed for cell viability. Furthermore, we determined the effects of Hcy on intracellular mediators related to cell viability in cardiomyocytes, namely NOX2, reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨ m) and ATP concentrations. Results We found that incubation of H9c2 cells with 0.1 mM D,L-Hcy (= 60 μM l-Hcy) resulted in an increase of ΔΨ m as well as ATP concentrations. 1.1 mM d,l-Hcy (= 460 μM l-Hcy) induced reversible flip-flop of the plasma membrane phospholipids, but not apoptosis. Incubation with 2.73 mM d,l-Hcy (= 1.18 mM l-Hcy) induced apoptosis and necrosis. This loss of cell viability was accompanied by a thread-to-grain transition of the mitochondrial reticulum, ATP depletion and nuclear NOX2 expression coinciding with ROS production as evident from the presence of nitrotyrosin residues. Notably, only at this concentration we found a significant increase in S-adenosylhomocysteine which is considered the primary culprit in HHC. Conclusion We found concentration-dependent effects of Hcy in cardiomyocytes, varying from induction of reversible flip-flop of the plasma membrane phospholipids, to apoptosis and necrosis.  相似文献   

8.
Summary WhenNecturus gallbladder epithelium is treated with ouabain the cells swell rapidly for 20–30 minutes then stabilize at a cell volume 30% greater than control. The cells then begin to shrink slowly to below control size. During the initial rapid swelling phase cell Na activity, measured with microelectrodes, rises rapidly. Calculations of the quantity of intracellular Na suggest that the volume increase is due to NaCl entry. Once the peak cell volume is achieved, the quantity of Na in the cell does not increase, suggesting that NaCl entry has been inhibited. We tested for inhibition of apical NaCl entry during ouabain treatment either by suddenly reducing the NaCl concentration in the mucosal bath or by adding bumetanide to the perfusate. Both maneuvers caused rapid cell shrinkage during the initial phase of the ouabain experiment, but had no effect on cell volume if performed during the slow shrinkage period. The lack of sensitivity to the composition of the mucosal bath during the shrinkage period occurred because of apparent feedback inhibition of NaCl entry. Another maneuver, reduction of the Na in the serosal bath to 10mm, also resulted in inhibition of apical NaCl uptake. The slow shrinkage which occurred after one or more hours of ouabain treatment was sensitive to the transmembrane gradients for K and Cl across the basolateral membrane and could be inhibited by bumetanide. Thus during pump inhibition inNecturus gallbladder epithelium cell Na and volume first increase due to continuing NaCl entry and then cell volume slowly decreases due to inhibition of the apical NaCl entry and activation of basolateral KCl exit.  相似文献   

9.
Summary When the red-light grown protonema ofAdiantum capillus-veneris was transferred to the dark, the nucleus ceased its migration ca. 5 hours before cell plate formation (Mineyuki andFuruya 1980). To see whether the nucleus was held by some cytoplasmic structure during nuclear positioning, protonemata were treated with various centrifugal forces at different stages of the cell cycle. Nuclei of G1 phase were easily displaced by centrifugation at 360×g for 15 minutes, but those of G2 or M phase were not displaced by it, suggesting that the nuclei were held by some cytoplasmic elements in G2 or M phase. This nuclear anchoring was not detectable in protonemata that were treated with 5mM colchicine. With this treatment, the nucleus did not stop its migration at late G2 and moved even in prophase. And the retardation of organelle movement which was observed in cytoplasm on the lateral side of the nucleus after the cessation of premitotic nuclear migration (Mineyuki andFuruya 1984) was not observed in the presence of colchicine. Thus the nuclei appear to be held by colchicine-sensitive structure in cytoplasm between the lateral surface of the nucleus and cell wall during the premitotic nuclear positioning. Electron micrographs showing cytoplasmic microtubules were consistent with the idea.Abbreviations PPN Premitotic positioning of the nucleus - L region Cytoplasm between the lateral surface of the nucleus and cell wall (seeMineyuki et al. 1984)  相似文献   

10.
Temperature and pH had only a slight effect on the astaxanthin content of a Phaffia rhodozyma mutant, but influenced the maximum specific growth rate and cell yield profoundly. The optimum conditions for astaxanthin production were 22°C at pH 5.0 with a low concentration of carbon source. Astaxanthin production was growth-associated, and the volumetric astaxanthin concentration gradually decreased after depletion of the carbon source. The biomass concentration decreased rapidly during the stationary growth phase with a concomitant increase in the cellular content of astaxanthin. Sucrose hydrolysis exceeded the assimilation rates of D-glucose and D-fructose and these sugars accumulated during batch cultivation. D-Glucose initially delayed D-fructose uptake, but D-fructose utilization commenced before glucose depletion. In continuous culture, the highest astaxanthin content was obtained at the lowest dilution rate of 0.043 h–1. The cell yield reached a maximum of 0.48 g cells·g–1 glucose utilized between dilution rates of 0.05 h–1 and 0.07 h–1 and decreased markedly at higher dilution rates. Correspondence to: J. C. Du Preez  相似文献   

11.
The yeastRhodotorula glutinis converts bothd-glucose andd-xylose up to 40% to trehalose, the final intracellular level reaching as much as 65 mg trehalose/g dry wt. The reaction ofd-xylose is inhibited byd-glucose both at the transport and the metabolic level. The formation of CO2 both from endogenous and from externally added trehalose is low. Uncouplers of oxidative phosphorylation (2,4-dinitrophenol and carbonylcyanidem-chlorophenylhydrazone) increase the endogenous production of CO2 together with a decrease of the intracellular level of trehalose. It is likely that trehalose can serve as a reserve substance forRhodotorula glutinis and that its degradation is blocked during the stationary phase of growth.  相似文献   

12.
13.
A Bacillus anthracis Sterne pXO1 plasmid-encoded protein designated Cot43 was found in coat extracts of purified spores. Cot43 is a tetratricopeptide repeat domain protein related to those which function as phosphatases in the sporulation phosphorelay and as regulators of competence and pathogenic factors. The synthesis of Cot43 began in the late exponential phase downstream from a sigmaA promoter (as mapped by RACE) and it was present at least until the formation of phase white endospores. There was specificity in the association of Cot43 with B. anthracis spores since Bacillus cereus producing Cot43 from a cloned gene had very little of this protein in spore coat extracts. In addition, Cot43 was synthesized by B. anthracis cells to the same extent in glucose-yeast extract and nutrient sporulation media, but was essentially absent from spores formed in the former. l-histidine is an important germinant for B. anthracis spores in macrophages, Spores produced by a mutant with a disruption of cot43 germinated in response to l-histidine both in vitro and within primary mouse macrophages earlier and more extensively than Sterne strain spores. The germination delay due to the presence of Cot43 would enhance spore survival and thus increase the chances for a successful infection. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Biosorption of triorganotin compounds by the cyanobacteria Synechocystis PCC 6803 and Plectonema boryanum and the microalga Chlorella emersonii, incubated in 2-(N-morpholino)ethanesulphonic acid (MES) buffer, pH 5.5, in the presence of 0.5 mm organotin (supplied as chlorides), increased with molecular mass of the organotins, the order being triphenyltin > tributylin (Bu3SnCl) > tripropyltin >- trimethyltin >- triethylin. In the butylin series, monobutyltin biosorption was lowest, although levels of dibutyltin uptake were greater than for Bu3SnCl. Cyanobacterial Bu3SnCl biosorption was complete in 5 min with no subsequent accumulation. In contrast, a second phase of uptake in C. emersonii resulted in an approximate 2.4-fold increase in cellular Bu3SnCl between 5 min and 2 h. The external pH had a marked influence on biosorption of Bu3SnCl by Synechocystis PCC 6803 and P. boryanum, with maximal uptake at pH 5.5 and 6.5, respectively. Effects of pH were less evident in C. emersonii. In all the organisms examined, no inhibition of Bu3SnCl biosorption was observed between 0.05 and 50 mm NaCl. However, an increase in the external NaCl concentration from 50 to 500 mm resulted in an approximate 55–65% reduction in Bu3SnCl uptake. Biosorption increased at increasing Bu3SnCl concentrations (0.25–3.0 mm). Saturation of Bu3SnCl biosorption at the higher concentrations was most evident in the cyanobacteria, although uptake levels were greater in these organisms at <- 2 mm Bu3SnCl. Theoretical maximum biosorption levels at complete cell saturation, derived from reciprocal Langmuir plots, were approximately 565, 525 and 1050 nmol Bu3SnCl mg–1 dry weight, for Synechocystis PCC 6803, P. boryanum and C. emersonii, respectively. Correspondence to: G. M. Gadd  相似文献   

15.
Molecular access to amino acid excretion by Corynebacterium glutamicum and Escherichia coli led to the identification of structurally novel carriers and novel carrier functions. The exporters LysE, RhtB, ThrE and BrnFE each represent the protoype of new transporter families, which are in part distributed throughout all of the kingdoms of life. LysE of C. glutamicum catalytes the export of basic amino acids. The expression of the carrier gene is regulated by the cell-internal concentration of basic amino acids. This serves, for example, to maintain homoeostasis if an excess of l-lysine or l-arginine inside the cell should arise during growth on complex media. RhtB is one of five paralogous systems in E. coli, of which at least two are relevant for l-threonine production. A third system is relevant for l-cysteine production. It is speculated that the physiological function of these paralogues is related to quorum sensing. ThrE of C. glutamicum exports l-threonine and l-serine. However, a ThrE domain with a putative hydrolytic function points to an as yet unknown role of this exporter. BrnFE in C. glutamicum is a two-component permease exporting branched-chained amino acids from the cell, and an orthologue in B. subtilis exports 4-azaleucine.  相似文献   

16.
Candida shehatae cells, cultivated on d-glucose and d-xylose, were subjected to a shift from fully aerobic to anaerobic fermentative conditions. After anaerobic conditions were imposed, growth was limited to approximately one doubling or less as C. shehatae rapidly entered a stationary phase of growth. Following the shift to anoxia, cell viability rapidly declined and the total cell volume declined in the d-xylose fermentations. Moreover, the cell volume distribution shifted to smaller volumes. Cell viability, measured by plate counts, declined nine times faster for d-xylose fermentations than for d-glucose fermentations. Anaerobic growth did not occur on either d-glucose or d-xylose. Selected vitamins and amino acids did not stimulate anaerobic growth in C. shehatae, but did enhance anaerobic growth on d-glucose in S. cerevisiae. The decline in cell viability and lack of anaerobic growth by C. shehatae were attributed to oxygen deficiency and not to ethanol inhibition. The results shed light on why C. shehatae anaerobic fermentations are not currently practical and suggest that research directed towards a biochemical understanding of why C. shehatae can not grow anaerobically will yield significant improvements in ethanol fermentations from d-xylose. Received 26 October 1998 / Received revision: 26 January 1999 / Accepted: 12 February 1999  相似文献   

17.
Summary The influence of the hydrogen-ion concentration on the growth and metabolism of a highly acid-resistant green alga, Chlorella ellipsoidea (strain Marburg St), was studied. Chlorella pyrenoidosa (Emerson strain) served as a normal control organism. Growth of Chlorella ellipsoidea occurs in the entire range from Ph 2.0 to Ph 10, whereas for Chlorella pyrenoidosa the limits were found to be Ph 3.5 and Ph 10. Respiration is much less sensitive to hydrogen-ion concentration in the acid-resistant as compared to the normal strain. Thus an increase in acidity from Ph 4.0 to Ph 2.0 increases the respiratory oxygen uptake by 120% in Chlorella pyrenoidosa and by 25% in Chlorella ellipsoidea. In addition, only the less resistant Chlorella pyrenoidosa shows an accumulation of nitrite in the dark in acid culture media, indicating a disturbance of the normal course of nitrate reduction under these conditions. On the other hand, the rate of photosynthesis of both organisms was found to be almost independent of acidity between Ph 4.0 and Ph 2.0. At the acid and alkaline limits of growth in both algae, an inhibition of cell division leads to an increase of cell size and dry weight per cell, frequently connected with the occurrence of bizarre giant cells. — In addition, adaptation phenomena were found to play a role in determining the acid limit of growth. Cells of Chlorella ellipsoidea, after inoculation from normal medium (Ph about 6) into a solution of Ph 2.0, begin growth at a high rate only after a lag of about two weeks. Cells grown previously in an acid medium, however, immediately resume growth upon inoculation into a medium of Ph 2.0. This adaptation involves a considerable reduction of cell size.  相似文献   

18.
We investigated the extent of calcification on the cell surface of the coccolithophorid Pleurochrysis haptonemofera using flow cytometry. Side scattering (SSC) by coccolith-bearing cells was higher than that by naked cells, suggesting the difference was due to scattering of the laser beam by the coccoliths. SSC of coccolith-bearing cells under acidic conditions corresponded well to the extracellular Ca content, although SSC could not be used to detect a delicate change in the coccolith thickness. The increase in SSC during the reproduction of coccoliths after decalcification was consistent with the increase in the number of coccoliths on the cell surface. The fluorescence after fluorescein-isothiocyanate-labeled lectin staining suggests that α-d-mannose, α-d-glucose, d-galactose, d-N-acetylgalactosamine, or derivatives of them are included in the coccoliths. Measurement of SSC and fluorescence after fluorescein-isothiocyanate-labeled lectin staining enabled rapid and quantitative determination of the status on the cell surface and isolation of desirable cells for physiological studies by cell sorting. Received May 22, 2001; accepted July 30, 2001.  相似文献   

19.
Summary The growth of Rhodotorula glutinis is inhibited by both D-threo chloramphenicol and an L-threo isomer of chloramphenicol (lacking the dichloroacetyl group), causing an increase in the mean generation time, in a variety of media, approximately proportional to the concentration of antibiotic. The antibiotic is not removed from the growth medium in any quantity during this inhibition of growth. The oxygen uptakes of normal and chloramphenicol-grown cells of R. glutinis are similar when expressed on a dry weight basis. The oxygen uptake of normal and L-threo isomer-grown cells is strongly inhibited by antimycin A, whereas D-threo chloramphenicol-grown cells are unaffected. There was no evidence to suggest that any uncoupling of phosphorylation occurred with either isomer. Pythium ultimum mycelium also showed similar oxygen uptakes per unit dry weight whether grown in the presence or absence of D-threo chloramphenicol. The D-threo chloramphenicol-grown mycelium was also insensitive to antimycin A in contrast to the normal mycelium which was strongly inhibited. P. ultimum grows slowly in the presence of 100 g/ml D-threo chloramphenicol in a glucose salts medium, but is completely inhibited by a similar concentration in a glycerol salts medium. The L-threo isomer does not inhibit the growth of P. ultimum.The mitochondria of Rhodotorula glutinis show a progressive disorganization when grown in the presence of increasing concentrations of D-threo chloramphenicol up to 1000 g/ml. There is an associated over synthesis of cell wall material in the higher concentrations of the antibiotic. The L-threo isomer produces no obvious fine structural abnormalities even at concentrations of 1000 g/ml.  相似文献   

20.
Biosynthesis of six saponins (ginsenosides) in suspension culture of P. quinquefolium Z5 was investigated. Ginsenoside content in biomass reached the highest level, nearly 30 mg g−1 d.w., between 25 and 30 days of the culture. Saponins were synthesized simultaneously with cell growth but their synthesis rate was not proportional to the growth rate. During the phase of rapid biomass multiplication, after which biomass reached 90% of its maximum yield, only half examined ginsenosides was produced. The second half of the final saponins yield was produced during the slow growth phase, in which only 10% of biomass was grown. During the intensive growth phase the productivity of six saponins examined per biomass (dry weight) unit was 3.4 μg mg−1 d.w. day−1, however, this parameter calculated for slow growth phase reached nearly 30 μg mg−1 d.w. day−1. There were differences in increase of the contents of six saponins determined in biomass, and it was the highest for saponins Re (20(S)-protopanaxatriol-6-[O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside]-20-O-β-d-glucopyranoside) and Rg1 (20(S)-protopanaxatriol-6,20-di-O-β-d-glucoside).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号