首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We examined the expression of dystrophin by immunohistochemical and immunoblot analyses in the skeletal and cardiac muscles of Xmdx/X+ heterozygous mice, which were obtained by mating male mdx mice (Xmdx/Y) with female wild type mice (X+/X+). Dystrophin was expressed on the surface membrane in both muscles, but the mode of expression was different between the two muscles. In cardiac muscle, dystrophin positive and negative cells were present in roughly equal numbers intermingled in a mosaic pattern; this was considered to reflect the random inactivation of X-chromosomes in early development. In skeletal muscle, most of the surface membrane was dystrophin positive. There were little signs of fiber necrosis or regeneration, and serum creatine kinase levels were normal. We are at present of opinion that the predominance of dystrophin-positive area in skeletal muscle is due to intracellular diffusion of dystrophin. On leave from The Department of Pediatrics, Tokyo Women's Medical College  相似文献   

2.
The ability of aminoglycoside antibiotics to promote read-through of nonsense mutations has attracted interest in these drugs as potential therapeutic agents in genetic diseases. However, the toxicity of aminoglycoside antibiotics may result in severe side effects during long-term treatment. In this paper, we report that negamycin, a dipeptide antibiotic, also restores dystrophin expression in skeletal and cardiac muscles of the mdx mouse, an animal model of Duchenne muscular dystrophy (DMD) with a nonsense mutation in the dystrophin gene, and in cultured mdx myotubes. Dystrophin expression was confirmed by immunohistochemistry and immunoblotting. We also compared the toxicity of negamycin and gentamicin, and found negamycin to be less toxic. Furthermore, we demonstrate that negamycin binds to a partial sequence of the eukaryotic rRNA-decoding A-site. We conclude that negamycin is a promising new therapeutic candidate for DMD and other genetic diseases caused by nonsense mutations.  相似文献   

3.
First-generation adenovirus vectors (AdV) have been used successfully to transfer a human dystrophin minigene to skeletal muscle of mdx mice. In most studies, strong viral promoters such as the cytomegalovirus promoter/enhancer (CMV) were used to drive dystrophin expression. More recently, a short version of the muscle creatine kinase promoter (MCK1350) has been shown to provide muscle-specific reporter gene expression after AdV-mediated gene delivery. Therefore, we generated a recombinant AdV where dystrophin expression is controlled by MCK1350 (AdVMCKdys). AdVMCKdys was injected by the intramuscular route into anterior tibialis muscle of mdx mice shortly after birth. Dystrophin expression was assessed at 20, 30, and 60 days after AdV-injection. At 20 days, muscles of AdVMCKdys-injected mdx mice showed a high number of dystrophin-positive fibers (mean: 365). At 60 days, the number of dystrophin-positive fibers was not only maintained, but increased significantly (mean: 600). In conclusion, MCK1350 allows for sustained dystrophin expression after AdV-mediated gene transfer to skeletal muscle of newborn mdx mice. In contrast to previous studies, where strong viral promoters were used, dystrophin expression driven by MCK1350 peaks at later time points. This may have implications for the future use of muscle-specific promoters for gene therapy of Duchenne muscular dystrophy.  相似文献   

4.
5.
《FEBS letters》1993,320(3):276-280
Duchenne muscular dystrophy (DMD) patients and mdx mice are characterized by the absence of dystrophin, a membrane cytoskeletal protein. Dystrophin is associated with a large oligomeric complex of sarcolemmal glycoproteins, including dystroglycan which provides a linkage to the extarcellular matrix component, laminin. The finding that all of the dystrophin-associated proteins (DAPs) are drastically reduced in DMD and mdx skeletal muscle supports the primary function of dystrophin as an anchor of the sarcolemmal glycoprotein complex to the subsarcolemmal cytoskeleton. These findings indicate that the efficacy of dystrophin gene therapy will depend not only on replacing dystrophin but also on restoring all of the DAPs in the sarcolemma. Here we have investigated the status of the DAPs in the skeletal muscle of mdx mice transgenic for the dystrophin gene. Our results demonstrate that transfer of dystrophin gene restores all of the DAPs together with dystrophin, suggesting that dystrophin gene therapy should be effective in restoring the entire dystrophin-glycoprotein complex.  相似文献   

6.
The amino acid sequence of the polyclonal antibodies we developed against the carboxyl terminus of the dystrophin-related protein, the putative gene product of B3 cDNA, had no homologous sequence to the dystrophin molecule except for two amino acids located at its ends for immunization. By immunohistochemical examination in C57B1/10ScSn and C57B1/10ScSn-mdx mice we found that the DRP was expressed on the surface membrane of fetal muscle fibers, was assembled at the neuromuscular junctions of the mature muscle fibers, and reappeared on the surface membrane of muscle fibers after denervation. Its localization was similar to that of the acetylcholine receptor, suggesting that DRP is one of the cytoskeletons which organize and stabilize the cytoplasmic domain of the acetylcholine receptor.  相似文献   

7.
Ca2+ ATPase and calcium binding proteins were studied in cardiac and skeletal muscles of normal and dystrophic mice. In normal and dystrophic mice, Ca2+ ATPase was quite reduced in cardiac muscle compared to skeletal muscle and was, unlike skeletal muscle, insensitive to orthovanadate. Ca2+ ATPase in skeletal muscle of dystrophic mice was reduced as compared to normal mice. In both cases (normal and dystrophic), calcium binding proteins were the same (identical molecular weight). The effect of 2 drugs (Polymixine B and Bepridil) which decrease protein bound calcium was studied: the muscle proteins of dystrophic mice did not present the same sensitivity to Bepridil as controls. These findings suggest the existence of a calcium-related defect in skeletal and cardiac muscle of dystrophic mice.  相似文献   

8.
9.
10.
The number of dystrophin-positive myofibers (DPM), that appeared in different skeletal muscles of mdx mice after a single injection of synthetic microspheres containing the full-length human dystrophin cDNA within the pHSADy expressing vector into femoral quadriceps muscle, was examined on cryostat sections. Injection of 25 micrograms cDNA resulted in the occurrence of 1, 2.4, 5.8 and 4.8% of DPM in the treated muscle in 1, 7, 21, and 60 days after the injection respectively. 7, 21, and 60 days after the treatment, these values comprised 2.1, 4.3 and 1% in the same muscle of the contralateral leg, and 5.5, 8.4, and 1% in the gluteal muscle. Expression of the full-length human dystrophin (427 kDa) in the muscle of the transfected mdx mice was observed. The presence of the transfected construction in skeletal muscles, heart, brain, lungs, and fetuses was demonstrated PCR. Utilization of the FISH technique with biotinilated pHSADy construct as a DNA probe showed that 7 days after the injection, the MF-2 microspheres were present in 70% of myoblast nuclei, in 64% of nuclei of gluteal muscles, and in 62% of the contralateral quadriceps nuclei. 21 days after the treatment, these values were 41, 29, and 45%, respectively. The MF-2 microsphere were detected in the nuclei of the blood, brain, heart, and lung cells, as well as in the placenta and tissues of 18-day-old fetuses. Our results demonstrated the high efficiency of microsphere-mediated transfer of gene constructs into cell nuclei, their long-term intranuclear persistence, and the ability to direct expression for at least 2 months after injection. The MF-2 microspheres attract special interest in respect to the targeted delivery of gene constructs into the nuclei.  相似文献   

11.
Summary We examined the morphological expression of dystrophin in the intrafusal muscle fibers in skeletal muscle from normal human and Duchenne muscular dystrophy (DMD) patients, using antisera against the N-terminal and C-terminal regions of dystrophin. The intrafusal fibers of normal muscle express dystrophin on their cell surface membrane, but those of DMD muscle do not.Abbreviation DMD Duchenne muscular dystrophy  相似文献   

12.
Numerous troponin T (TnT) isoforms are produced by alternative splicing from three genes characteristic of cardiac, fast skeletal, and slow skeletal muscles. Apart from the developmental transition of fast skeletal muscle TnT isoforms, switching of TnT expression during muscle development is poorly understood. In this study, we investigated precisely and comprehensively developmental changes in chicken cardiac and slow skeletal muscle TnT isoforms by two-dimensional gel electrophoresis and immunoblotting with specific antisera. Four major isoforms composed of two each of higher and lower molecular weights were found in cardiac TnT (cTnT). Expression of cTnT changed from high- to low-molecular-weight isoforms during cardiac muscle development. On the other hand, such a transition was not found and only high-molecular-weight isoforms were expressed in the early stages of chicken skeletal muscle development. Two major and three minor isoforms of slow skeletal muscle TnT (sTnT), three of which were newly found in this study, were expressed in chicken skeletal muscles. The major sTnT isoforms were commonly detected throughout development in slow and mixed skeletal muscles, and at developmental stages until hatching-out in fast skeletal muscles. The expression of minor sTnT isoforms varied from muscle to muscle and during development.  相似文献   

13.
Fujimori KE  Uyeda A  Taguchi T 《FEBS letters》2002,529(2-3):303-308
The mdp77 gene was first cloned from the cDNA library of denervated chick muscles, while its role(s) in vivo was unknown. In the present study, using specific polyclonal antibodies against MDP77, we show that MDP77 was expressed specifically in the skeletal and cardiac muscle, and confirm its presence in the cytoplasm of the extrafusal muscle fibers. In mature muscles, MDP77 immunoreactivity was observed in a repetitive manner along the sarcomere. The onset of MDP77 expression occurred just after myotube formation both in vivo and in vitro. Furthermore, MDP77 was enriched in the intrafusal muscle fibers. Our findings suggest that MDP77 plays an important role(s) in the differentiation, maturation and function of both the skeletal and cardiac muscles.  相似文献   

14.
Connor, Michael K., and David A. Hood. Effect ofmicrogravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. J. Appl.Physiol. 84(2): 593-598, 1998.The purpose ofthis study was to examine the expression of nuclear and mitochondrialgenes in cardiac and skeletal muscle (triceps brachii) in response toshort-duration microgravity exposure. Six adult male rats were exposedto microgravity for 6 days and were compared with six ground-basedcontrol animals. We observed a significant 32% increase in heartmalate dehydrogenase (MDH) enzyme activity, which was accompanied by a62% elevation in heart MDH mRNA levels after microgravity exposure.Despite modest elevations in the mRNAs encoding subunits III, IV, andVIc as well as a 2.2-fold higher subunit IV protein content afterexposure to microgravity, heart cytochromec oxidase (CytOx) enzyme activityremained unchanged. In skeletal muscle, MDH expression was unaffectedby microgravity, but CytOx activity was significantly reduced 41% bymicrogravity, whereas subunit III, IV, and VIc mRNA levels and subunitIV protein levels were unaltered. Thus tissue-specific (i.e., heart vs.skeletal muscle) differences exist in the regulation of nuclear-encoded mitochondrial proteins in response to microgravity. In addition, theexpression of nuclear-encoded proteins such as CytOx subunit IV andexpression of MDH are differentially regulated within a tissue. Ourdata also illustrate that the heart undergoes previously unidentifiedmitochondrial adaptations in response to short-term microgravityconditions more dramatic than those evident in skeletal muscle. Furtherstudies evaluating the functional consequences of these adaptations inthe heart, as well as those designed to measure protein turnover, arewarranted in response to microgravity.

  相似文献   

15.
The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.  相似文献   

16.
The absence of dystrophin and resultant disruption of the dystrophin glycoprotein complex renders skeletal muscles of dystrophic patients and dystrophic mdx mice susceptible to contraction-induced injury. Strategies to reduce contraction-induced injury are of critical importance, because this mode of damage contributes to the etiology of myofiber breakdown in the dystrophic pathology. Transgenic overexpression of insulin-like growth factor-I (IGF-I) causes myofiber hypertrophy, increases force production, and can improve the dystrophic pathology in mdx mice. In contrast, the predominant effect of continuous exogenous administration of IGF-I to mdx mice at a low dose (1.0-1.5 mg.kg(-1).day(-1)) is a shift in muscle phenotype from fast glycolytic toward a more oxidative, fatigue-resistant, slow muscle without alterations in myofiber cross-sectional area, muscle mass, or maximum force-producing capacity. We found that exogenous administration of IGF-I to mdx mice increased myofiber succinate dehydrogenase activity, shifted the overall myosin heavy chain isoform composition toward a slower phenotype, and, most importantly, reduced contraction-induced damage in tibialis anterior muscles. The deficit in force-producing capacity after two damaging lengthening contractions was reduced significantly in tibialis anterior muscles of IGF-I-treated (53 +/- 4%) compared with untreated mdx mice (70 +/- 5%, P < 0.05). The results provide further evidence that IGF-I administration can enhance the functional properties of dystrophic skeletal muscle and, compared with results in transgenic mice or virus-mediated overexpression, highlight the disparities in different models of endocrine factor delivery.  相似文献   

17.
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene locus, is expressed on the muscle fiber surface. One key to further understanding of the cellular function of dystrophin would be extended knowledge about its subcellular organization. We have shown that dystrophin molecules are not uniformly distributed over the humen, rat, and mouse skeletal muscle fiber surface using three independent methods. Incubation of single-teased muscle fibers with antibodies to dystrophin revealed a network of denser transversal rings (costameres) and finer longitudinal interconnections. Double staining of longitudinal semithin cryosections for dystrophin and alpha-actinin showed spatial juxtaposition of the costameres to the Z bands. Where peripheral myonuclei precluded direct contact of dystrophin to the Z bands the organization of dystrophin was altered into lacunae harboring the myonucleus. These lacunae were surrounded by a dystrophin ring and covered by a more uniform dystrophin veil. Mechanical skinning of single-teased fibers revealed tighter mechanical connection of dystrophin to the plasma membrane than to the underlying internal domain of the muscle fiber. The entire dystrophin network remained preserved in its structure on isolated muscle sarcolemma and identical in appearance to the pattern observed on teased fibers. Therefore, connection of defined areas of plasma membrane or its constituents such as ion channels to single sarcomeres might be a potential function exerted by dystrophin alone or in conjunction with other submembrane cytoskeletal proteins.  相似文献   

18.
BACKGROUND: The helper-dependent adenovirus (HDAd) vector is less immunogenic and has a larger cloning capacity of up to 37 kb enough to carry the full-length dystrophin cDNA. However, high and long-term expression of dystrophin transduced to mature muscle still remains difficult. One of the main reasons for this is that the expression of the coxsackievirus and adenovirus receptor (CAR) is very low in mature muscle. METHODS: We have constructed two different HDAd vectors. One contains the LacZ and the murine full-length dystrophin expression cassette (HDAdLacZ-dys), and the other is a new, improved vector containing the CAR and the dystrophin expression cassette (HDAdCAR-dys). RESULTS: We initially demonstrated high dystrophin expression and prevention of the dystrophic pathology in mdx muscle injected during the neonatal phase with HDAdLacZ-dys. Furthermore, we demonstrated that repeated injections of HDAdCAR-dys into mature muscle led to approximately nine times greater dystrophin-positive fibers in number than a single injection, thereby recovering the expression of dystrophin-associated proteins. This data has also shown that HDAdCAR-dys enabled administration of adenovirus (Ad) vector to the host with pre-existing immunity to the same serotype of Ad. CONCLUSIONS: Repetitive injections of the HDAd vector containing the CAR and the dystrophin expression cassette could improve the efficiency of subsequent dystrophin gene transfer to mature mdx muscle. This result suggests that our new HDAd vector will provide a novel gene therapy strategy for Duchenne muscular dystrophy, raising the prospects for gene therapy of other hereditary myopathies.  相似文献   

19.
20.
The gene expression pattern of the glucose transporters (GLUT1, GLUT3, GLUT8, and GLUT12) among pectoralis major and minor, biceps femoris, and sartorius muscles from newly hatched chicks was examined. GLUT1 mRNA level was higher in pectoralis major muscle than in the other muscles. Phosphorylated AKT level was also high in the same muscle, suggesting a relationship between AKT and GLUT1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号