首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I gamma CAT is a hybrid protein that inserts into the membrane of the endoplasmic reticulum as a type II membrane protein. These proteins span the membrane once and expose the NH2-terminal end on the cytoplasmic side and the COOH terminus on the exoplasmic side. I gamma CAT has a single hydrophobic segment of 30 amino acid residues that functions as a signal for membrane insertion and anchoring. The signal-anchor region in I gamma CAT was analyzed by deletion mutagenesis from its COOH-terminal end (delta C mutants). The results show that the 13 amino acid residues on the amino-terminal side of the hydrophobic segment are not sufficient for membrane insertion and translocation. Mutant proteins with at least 16 of the hydrophobic residues are inserted into the membrane, glycosylated, and partially proteolytically processed by a microsomal protease (signal peptidase). The degree of processing varies between different delta C mutants. Mutant proteins retaining 20 or more of the hydrophobic amino acid residues can span the membrane like the parent I gamma CAT protein and are not proteolytically processed. Our data suggest that in the type II membrane protein I gamma CAT, the signals for membrane insertion and anchoring are overlapping and that hydrophilic amino acid residues at the COOH-terminal end of the hydrophobic segment can influence cleavage by signal peptidase. From this and previous work, we conclude that the function of the signal-anchor sequence in I gamma CAT is determined by three segments: a positively charged NH2 terminus, a hydrophobic core of at least 16 amino acid residues, and the COOH-terminal flanking hydrophilic segment.  相似文献   

2.
Human asialoglycoprotein receptor H1 is a single-spanning membrane protein with an amino-terminal domain of 40 residues exposed to the cytoplasm and the carboxyl-terminal domain translocated to the exoplasmic side of the membrane. It has been shown earlier that the transmembrane segment functions as an internal uncleaved signal sequence for insertion into the endoplasmic reticulum. In a deletion protein lacking almost the entire cytoplasmic domain, the signal sequence is cleaved at the carboxyl-terminal end of the transmembrane segment. All available criteria suggest that the protein is processed by signal peptidase. The cytoplasmic domain of the receptor does not directly inhibit signal cleavage since it does not detectably hinder cleavage of the normally amino-terminal signal sequence of influenza hemagglutinin in fusion proteins. We suggest that by its size or structure it affects the position of the receptor in the membrane and thus the accessibility of the potential cleavage site to signal peptidase.  相似文献   

3.
Multilineage colony stimulating factor is a secretory protein with a cleavable signal sequence that is unusually long and hydrophobic. Using molecular cloning techniques we exchanged sequences NH2- or COOH-terminally flanking the hydrophobic signal sequence. Such modified fusion proteins still inserted into the membrane but their signal sequence was not cleaved. Instead the proteins were now anchored in the membrane by the formerly cleaved signal sequence (signal-anchor sequence). They exposed the NH2 terminus on the exoplasmic and the COOH terminus on the cytoplasmic side of the membrane. We conclude from our results that hydrophilic sequences flanking the hydrophobic core of a signal sequence can determine cleavage by signal peptidase and insertion into the membrane. It appears that negatively charged amino acid residues close to the NH2 terminal side of the hydrophobic segment are compatible with translocation of this segment across the membrane. A tripartite structure is proposed for signal-anchor sequences: a hydrophobic core region that mediates targeting to and insertion into the ER membrane and flanking hydrophilic segments that determine the orientation of the protein in the membrane.  相似文献   

4.
The rotavirus non-structural glycoprotein (NS28), the receptor for the virus core during budding into the lumen of the rough endoplasmic reticulum (RER), is 175 amino acids long and possesses an uncleaved signal sequence and two amino-terminal glycosylation sites. Utilizing one of three potential hydrophobic domains, the protein spans the membrane only once, with the glycosylated amino-terminal region oriented to the luminal side of the ER and the carboxy-terminal region to the cytoplasmic side. To localize sequences involved in translocation of NS28, we constructed a series of mutations in the coding regions for the hydrophobic domains of the protein. Mutant protein products were studied by in vitro translation and by transfection in vivo. In transfected cells, all mutant forms localize to the ER, and none are secreted. In vitro, each of the three hydrophobic domains is able to associate with microsomes. However, glycosylation and proteolysis of wild-type and mutant forms of NS28 indicates that the wild-type protein is anchored in the membrane only by the second hydrophobic domain, leaving approximately 131 residues exposed on the cytoplasmic side for receptor - ligand interaction.  相似文献   

5.
Canine microsomal signal peptidase activity has been shown previously to co-migrate as an apparent complex of six polypeptides with molecular masses of 25, 23, 22, 21, 18, and 12 kDa. The 22- and 23-kDa species are differentially glycosylated forms of the same protein, designated SPC 22/23. The amino acid sequence of SPC 22/23 was deduced from cDNA clones. The protein is synthesized without a cleavable amino-terminal signal sequence and contains a single site for N-linked glycosylation. SPC 22/23 appears to be anchored to the rough endoplasmic reticulum membrane by a single hydrophobic segment near its amino terminus, with the remainder of the protein positioned on the lumenal side of the membrane. The amino acid sequence of SPC 22/23 shares homology with tryptic peptides derived from the hen oviduct signal peptidase glycoprotein, one of two possible proteins required for signal peptide processing in the avian system (Baker, R.K., and Lively, M.O. (1987) Biochemistry 26, 8561-8567). Therefore, the complete amino acid sequence of SPC 22/23 presented in this report corresponds to one of two possible proteins required for signal peptide processing in higher eukaryotic cells.  相似文献   

6.
A topology of the Escherichia coli leader peptidase has been previously proposed on the basis of proteolytic studies. Here, a collection of alkaline phosphatase fusions to leader peptidase is described. Fusions to the periplasmic domain of this protein exhibit high alkaline phosphatase activity, while fusions to the cytoplasmic domain exhibit low activity. Elements within the cytoplasmic domain are necessary to stably anchor alkaline phosphatase in the cytoplasm. The amino-terminal hydrophobic segment of leader peptidase acts as a weak export signal for alkaline phosphatase. However, when this segment is preceded by four lysines, it acts as a highly efficient export signal. The coherence of in vitro studies with alkaline phosphatase fusion analysis of the topology of leader peptidase further indicates the utility of this genetic approach to membrane protein structure and insertion.  相似文献   

7.
The human asialoglycoprotein receptor H1 is a single-spanning membrane protein with the amino terminus facing the cytoplasm and the carboxy terminus exposed on the exoplasmic side of the plasma membrane. It has been shown earlier that the transmembrane segment, residues 38-65, functions as an internal signal directing protein synthesis to the endoplasmic reticulum and initiating membrane insertion. This process is co-translational and mediated by signal recognition particle (SRP). To identify subsegments within this region containing the signal information, we prepared deletion mutants at the level of the cDNA and analysed them in a wheat germ in vitro translation system with microsomes as the target membrane. Insertion and membrane anchoring were judged by the glycosylation of the protein, its resistance to exogenous protease and the extent to which it can be extracted from the microsomes by alkaline treatment. It was found that very small deletions already reduce the stability of membrane anchoring. However, nearly half of the transmembrane domain can be deleted, both from the amino-terminal and from the carboxy-terminal side, without completely abolishing membrane insertion. Several mutants, although not inserted, still interact with SRP. The results support the notion that the main feature of a signal sequence is a hydrophobic stretch of sufficient length (10-12 residues in our sequence), and indicate that recognition by SRP is not sufficient for membrane insertion.  相似文献   

8.
The E1 glycoprotein of the avian coronavirus infectious bronchitis virus contains a short, glycosylated amino-terminal domain, three membrane-spanning domains, and a long carboxy-terminal cytoplasmic domain. We show that E1 expressed from cDNA is targeted to the Golgi region, as it is in infected cells. E1 proteins with precise deletions of the first and second or the second and third membrane-spanning domains were glycosylated, thus suggesting that either the first or third transmembrane domain can function as an internal signal sequence. The mutant protein with only the first transmembrane domain accumulated intracellularly like the wild-type protein, but the mutant protein with only the third transmembrane domain was transported to the cell surface. This result suggests that information specifying accumulation in the Golgi region resides in the first transmembrane domain, and provides the first example of an intracellular membrane protein that is transported to the plasma membrane after deletion of a specific domain.  相似文献   

9.
Leader peptidase of Escherichia coli, a protein of 323 residues, has three hydrophobic domains. The first, residues 1-22, is the most apolar and is followed by a polar region (23-61) which faces the cytoplasm. The second hydrophobic domain (residues 62-76) spans the membrane. The third hydrophobic domain, which has a minimal apolar character, and the polar, carboxyl-terminal two-thirds of the protein are exposed to the periplasm. Deletion of either the amino terminus (residues 4-50) or the third hydrophobic region (residues 83-98) has almost no effect on the rate of leader peptidase membrane assembly, while the second hydrophobic domain is essential for insertion (Dalbey, R., and Wickner, W. (1987) Science 235, 783-787). To further define the roles of these domains, we have replaced the normal, cleaved leader sequence of pro-OmpA and M13 procoat with regions containing either the first or second apolar domain of leader peptidase. The second apolar domain supports the translocation of OmpA or coat protein across the plasma membrane, establishing its identity as an internal, uncleaved signal sequence. In addition to this sequence, we now find that leader peptidase needs either the amino-terminal domain or the third hydrophobic domain to permit its rapid membrane assembly. These results show that, although a signal sequence is necessary for rapid membrane assembly of leader peptidase, it is not sufficient.  相似文献   

10.
Solution NMR of signal peptidase, a membrane protein   总被引:1,自引:0,他引:1  
Useful solution nuclear magnetic resonance (NMR) data can be obtained from full-length, enzymatically active type I signal peptidase (SPase I), an integral membrane protein, in detergent micelles. Signal peptidase has two transmembrane segments, a short cytoplasmic loop, and a 27-kD C-terminal catalytic domain. It is a critical component of protein transport systems, recognizing and cleaving amino-terminal signal peptides from preproteins during the final stage of their export. Its structure and interactions with the substrate are of considerable interest, but no three-dimensional structure of the whole protein has been reported. The structural analysis of intact membrane proteins has been challenging and only recently has significant progress been achieved using NMR to determine membrane protein structure. Here we employ NMR spectroscopy to study the structure of the full-length SPase I in dodecylphosphocholine detergent micelles. HSQC-TROSY spectra showed resonances corresponding to approximately 3/4 of the 324 residues in the protein. Some sequential assignments were obtained from the 3D HNCACB, 3D HNCA, and 3D HN(CO) TROSY spectra of uniformly 2H, 13C, 15N-labeled full-length SPase I. The assigned residues suggest that the observed spectrum is dominated by resonances arising from extramembraneous portions of the protein and that the transmembrane domain is largely absent from the spectra. Our work elucidates some of the challenges of solution NMR of large membrane proteins in detergent micelles as well as the future promise of these kinds of studies.  相似文献   

11.
《The Journal of cell biology》1993,120(5):1093-1100
The lamin B receptor (LBR) is a polytopic protein of the inner nuclear membrane. It is synthesized without a cleavable amino-terminal signal sequence and composed of a nucleoplasmic amino-terminal domain of 204 amino acids followed by a hydrophobic domain with eight putative transmembrane segments. To identify a nuclear envelope targeting signal, we have examined the cellular localization by immunofluorescence microscopy of chicken LBR, its amino-terminal domain and chimeric proteins transiently expressed in transfected COS-7. Full- length LBR was targeted to the nuclear envelope. The amino-terminal domain, without any transmembrane segments, was transported to the nucleus but excluded from the nucleolus. When the amino-terminal domain of LBR was fused to the amino-terminal side of a transmembrane segment of a type II integral membrane protein of the ER/plasma membrane, the chimeric protein was targeted to the nuclear envelope, likely the inner nuclear membrane. When the amino-terminal domain was deleted from LBR and replaced by alpha-globin, the chimeric protein was retained in the ER. These findings demonstrate that the amino-terminal domain of LBR is targeted to the nucleus after synthesis in the cytoplasm and that this polypeptide can function as a nuclear envelope targeting signal when located at the amino terminus of a type II integral membrane protein synthesized on the ER.  相似文献   

12.
13.
14.
Leader peptidase, typical of inner membrane proteins of Escherichia coli, does not have an amino-terminal leader sequence. This protein contains an internal signal peptide, residues 51-83, which is essential for assembly and remains as a membrane anchor domain. We have employed site-directed mutagenesis techniques to either delete residues within this domain or substitute a charged amino acid for one of these residues to determine the important properties of the internal signal. The deletion analysis showed that a very small apolar domain, residues 70-76, is essential for assembly, whereas residues that flank it are dispensable for its function. However, point mutations with charged amino acid residues within the polar sequence (residues 77-82) slow or abolish leader peptidase membrane assembly. Thus, a polar region, Arg-Ser-Phe-Ile-Tyr-Glu, is important for the signal peptide function of leader peptidase, unlike other signals identified thus far.  相似文献   

15.
Type I signal peptidase is the enzyme responsible for cleaving off the amino-terminal signal peptide from proteins that are secreted across the bacterial cytoplasmic membrane. It is an essential membrane bound enzyme whose serine/lysine catalytic dyad resides on the exo-cytoplasmic surface of the bacterial membrane. This review discusses the progress that has been made in the structural and mechanistic characterization of Escherichia coli type I signal peptidase (SPase I) as well as efforts to develop a novel class of antibiotics based on SPase I inhibition. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

16.
A protein destined for export from the cell cytoplasm is synthesized as a preprotein with an amino-terminal signal peptide. In Escherichia coli, typically signal peptides that guide preproteins into the SecYEG protein conduction channel are subsequently removed by signal peptidase I. To understand the mechanism of this critical step, we have assessed the conformation of the signal peptide when bound to signal peptidase by solution nuclear magnetic resonance. We employed a soluble form of signal peptidase, which laks the two transmembrane domains (SPase I Δ2-75), and the E. coli alkaline phosphatase signal peptide. Using a transferred NOE approach, we found clear evidence of a weak peptide-enzyme complex formation. The peptide adopts a U-turn shape originating from the proline residues within the primary sequence that is stabilized by its interaction with the peptidase and leaves key residues of the cleavage region exposed for proteolysis. In dodecylphosphocholine (DPC) micelles the signal peptide also adopts a U-turn shape comparable with that observed in association with the enzyme. In both environments this conformation is stabilized by the signal peptide phenylalanine side chain-interaction with enzyme or lipid mimetic. Moreover, in the presence of DPC, the N-terminal core region residues of the peptide adopt a helical motif and based on PRE (paramagnetic relaxation enhancement) experiments are shown to be buried within the membrane. Taken together, this is consistent with proteolysis of the preprotein occurring while the signal peptide remains in the bilayer and the enzyme active site functioning at the membrane surface.  相似文献   

17.
Useful solution nuclear magnetic resonance (NMR) data can be obtained from full-length, enzymatically active type I signal peptidase (SPase I), an integral membrane protein, in detergent micelles. Signal peptidase has two transmembrane segments, a short cytoplasmic loop, and a 27-kD C-terminal catalytic domain. It is a critical component of protein transport systems, recognizing and cleaving amino-terminal signal peptides from preproteins during the final stage of their export. Its structure and interactions with the substrate are of considerable interest, but no three-dimensional structure of the whole protein has been reported. The structural analysis of intact membrane proteins has been challenging and only recently has significant progress been achieved using NMR to determine membrane protein structure. Here we employ NMR spectroscopy to study the structure of the full-length SPase I in dodecylphosphocholine detergent micelles. HSQC-TROSY spectra showed resonances corresponding to approximately 3/4 of the 324 residues in the protein. Some sequential assignments were obtained from the 3D HNCACB, 3D HNCA, and 3D HN(CO) TROSY spectra of uniformly 2H, 13C, 15N-labeled full-length SPase I. The assigned residues suggest that the observed spectrum is dominated by resonances arising from extramembraneous portions of the protein and that the transmembrane domain is largely absent from the spectra. Our work elucidates some of the challenges of solution NMR of large membrane proteins in detergent micelles as well as the future promise of these kinds of studies.  相似文献   

18.
An internal signal sequence: the asialoglycoprotein receptor membrane anchor   总被引:56,自引:0,他引:56  
M Spiess  H F Lodish 《Cell》1986,44(1):177-185
The human asialoglycoprotein receptor H1 is anchored in the membrane by a single stretch of 20 hydrophobic amino acids; the hydrophilic amino terminus faces the cytoplasm, and the carboxyl terminus is exoplasmic. We show here that glycosylation and insertion of the asialoglycoprotein receptor into the endoplasmic reticulum membrane is cotranslational and SRP-dependent and occurs without proteolytic cleavage. The membrane-anchor domain is necessary for membrane insertion, since a receptor with the segment deleted is neither inserted nor glycosylated. The segment is also sufficient for membrane insertion, since it will initiate translocation of a carboxy-terminal domain of rat alpha-tubulin across the membrane. We propose that a helical hairpin mechanism of membrane insertion is used both by cleaved amino-terminal and uncleaved internal signal sequences.  相似文献   

19.
Signal peptidase can cleave inside a polytopic membrane protein   总被引:3,自引:0,他引:3  
The signal peptides of most proteins targeted to the endoplasmic reticulum are specifically cleaved by signal peptidase. Although potential cleavage sites occur frequently in polytopic proteins after membrane-spanning segments, processing is restricted to the first hydrophobic domain, suggesting that signal peptidase might not have access to subsequently translocated, internal domains. To test this hypothesis, we replaced the third transmembrane segment of an artificial threefold membrane-spanning protein by a sequence which is normally an amino-terminal signal. Upon in vitro translation and insertion into microsomes, efficient cleavage at this sequence was observed, thus demonstrating the ability of signal peptidase to cleave within polytopic membrane proteins.  相似文献   

20.
Dipeptidyl peptidase IV (DPPIV) is a membrane glycoprotein with a type II orientation in the plasma membrane. As shown in a cell-free translation system, the amino-terminal 34 amino acids of rat DPPIV are involved in translocating nascent polypeptide across the membrane of microsomes and in anchoring the translocated polypeptide in the microsomal membrane. The amino-terminal sequence performing this dual function is composed of: a central hydrophobic core of 22 amino acid residues; 6 amino-terminal residues preceding the hydrophobic core (MKTPWK); and 6 residues following the hydrophobic core. The six residues preceding the hydrophobic core are exposed on the outside (cytoplasmic side) of the microsomal membrane. Site-directed mutagenesis studies show that deletion of this cytoplasmic domain, excluding the amino-terminal initiating methionine, does not affect translocation of nascent DPPIV polypeptide, but does affect significantly anchoring of the translocated polypeptide in the microsomal membrane. In contrast, changing the two cytoplasmic Lys to Glu residues or shortening of the hydrophobic core from 22 to 15 residues or converting the last 11e of the shortened hydrophobic core into Ala affects neither translocation across nor anchoring of the DPPIV polypeptide in the microsomal membrane. These and other structural features of the DPPIV amino-terminal signal-anchor sequences are discussed along with other types of sequences for their role in targeting nascent polypeptides to the RER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号