首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effective cross section for the H 2 + +H 2 + → H 3 + +p reaction in the energy range 5.7–11.5 eV is measured by the split beam method. The maximum of the cross section at an energy of ~8 eV is related to the production of the H 4 ++ compound system. The reaction threshold W thr≈5 eV provides evidence in favor of the classical model of the H 2 + ion with the charge fixed on one of the nuclei throughout the collision event.  相似文献   

2.
The effective cross section for the H 2 + + H 2 + → H 3 + + p reaction in the energy range 5.7–11.5 eV is measured by the split beam method. The cross-section maximum at an energy of ~8 eV is related to the production of the H 4 ++ compound system. The reaction threshold W thr ≈5 eV provides evidence in favor of the classical model with the H 2 + ion charge fixed on one of the two nuclei during the entire collision event.  相似文献   

3.
4.

Aims and background

The ability to suppress soil nitrification through the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI). Earlier, we reported that sorghum roots release higher BNI-activity when grown with NH 4 + , but not with NO 3 - as N source. Also for BNI release, rhizosphere pH of <5.0 is needed; beyond this, a negative effect on BNI release was observed with nearly 80% loss of BNI activity at pH >7.0. This study is aimed at understanding the inter-functional relationships associated with NH 4 + uptake, rhizosphere-pH and plasma membrane H+-ATPase (PM H+-ATPase) activity in regulating the release of BNIs (biological nitrification inhibitors) from sorghum roots.

Methods

Sorghum was grown hydroponically and root exudates were collected from intact plants using a pH-stat system to separate the secondary acidification effects by NH 4 + uptake on BNIs release. A recombinant luminescent Nitrosomonas europaea bioassay was used to determine BNI-activity. Root plasma membrane was isolated using a two-phase partitioning system. Hydrolytic H+-ATPase activity was determined. Split-root system setup was deployed to understand the localized responses to NH 4 + , H+-ATPase-stimulator (fusicoccin) or H+-ATPase-inhibitor (vanadates) on BNI release by sorghum.

Results

Presence of NH 4 + in the rhizosphere stimulated the expression of H+-ATPase activity and enhanced the release of BNIs from sorghum roots. Fusicoccin, which stimulates H+-ATPase activity, also stimulated BNIs release in the absence of NH 4 + ; vanadate, which suppresses H+-ATPase activity, also suppressed the release of BNIs. NH 4 + levels (in rhizosphere) positively influenced BNIs release and root H+-ATPase activity in the concentration range of 0-1.0 mM, indicating a close relationship between BNI release and root H+-ATPase activity with a possible involvement of carrier-mediated transport for the release of BNIs in sorghum.

Conclusion

Our results suggest that NH 4 + uptake, PM H+-ATPase activity, and rhizosphere acidification are functionally inter-connected with BNI release in sorghum. Such knowledge is critical to gain insights into why BNI function is more effective in light-textured, mildly acidic soils compared to other soil types.  相似文献   

5.
Growth of 2-month-old nonnodulatedHippophaë rhamnoides seedlings supplied with combined N was compared with that of nodulated seedlings grown on zero N. Plant growth was significantly better with combined N than with N2 fixation and, although not statistically significant for individual harvests, tended to be highest in the presence of NH 4 + , a mixture of NH 4 + and NO 3 ? producing the highest yields. Growth was severely reduced when solely dependent on N2 fixation and, unlike the combined-N plants, shoot to root ratios had only slightly increased after an initial decrease. An apparently insufficient nodule mass (nodule weight ratio <5 per cent) during the greater part of the experimental period is suggested as the main cause of the growth reduction in N2-fixing plants. Thein vivo nitrate reductase activity (NRA) of NO 3 ? dependent plants was almost entirely located in the roots. However, when grown with a combination of NO 3 ? and NH 4 + , root NRA was decreased by approximately 85 per cent.H. rhamnoides demonstrated in the mixed supply a strong preference for uptake of N as NH 4 + , NO 3 ? contributing only for approximately 20 per cent to the total N assimilation. Specific rates of N acquisition and ion uptake were generally highest in NO 3 ? +NH 4 + plants. The generation of organic anions per unit total plant dry weight was approximately 40 per cent less in the NH 4 + plants than in the NO 3 ? plants. Measured extrusions of H+ or OH? (HCO 3 ? ) were generally in good agreement with calculated values on the basis of plant composition, and the acidity generated with N2 fixation amounted to 0.45–0.55 meq H+. (mmol Norg)?1. Without acidity control and in the presence of NH 4 + , specific rates of ion uptake and carboxylate generation were strongly depressed and growth was reduced by 30–35 per cent. Growth of nonnodulatedH. rhamnoides plants ceased at the lower pH limit of 3.1–3.2 and deterioration set in; in the case of N2-fixing plants the nutrient solution pH stabilized at a value of 3.8–3.9 without any apparent adverse effects upon plant performance. The chemical composition of experimental and field-growing plants is being compared and some comments are made on the nitrogen supply characteristics of their natural sites.  相似文献   

6.
The CH3 + ion, formed in ionized methane, undergoes consecutive eliminative condensation reactions with methane to form the carbonium ions C2H5 +, i-C3H7 + and t-C4H9 +. AtT<500°K, \(N_{CH_4 } \) ?1016 cm?3 these ions react with NH3 in competitive condensation-H+ transfer reactions, e.g. $$\begin{gathered} C_2 H_5 ^ + + NH_3 \xrightarrow{M} C_2 H_5 NH_3 ^ + \hfill \\ - - - \to NH_4 ^ + + C_2 H_4 \hfill \\ \end{gathered} $$ At particle densities of \(N_{CH_4 } \) <1016 cm?3 proton transfer is the only significant reaction channel. At \(N_{CH_4 } \) >1017 cm?3 condensation constitutes 5–20% of the overall reactions. The product of the condensation reaction further associates with CO2 to form C2H5NH3 +·CO2; the atomic composition of this cluster ion is identical with the protonated amino acid alanine. The carbonium ions i-C3H7 + and t-C4H9 + condense also with HCN to yield protonated isocyanides. HCNH+ also appears to condense with HCN atT>570°K, and form cluster ions with HCN at lower temperatures. The rate constants of the condensation reactions vary with temperature and pressure in a complex manner. Under conditions similar to those on Titan at an altitude of 100 km (T=100–150°K, \(N_{CH_4 } \) ≈1018 cm?3), with a methane atmosphere containing 1% H2 and traces of NH3 and H2O, ion-molecule condensation reactions followed by H+ transfer are expected to lead to the atmospheric synthesis of C2H6, C3H8, CH3OH, C2H5OH and the terminal ions NH4 +, CH3NH3 + and C2H5NH3 +. At higher temperatures (250°K<T<400°K), the synthesis of i-C4H10, i-C3H7OH and t-C4H9OH and of the ions i-C3H7NH3 + and t-C4H9NH3 + is also expected. Electron recombination of the terminal ions may yield amines, imines and nitriles. Cycles of protonation and dissociative recombination of the alkanes and alcohols produced in condensation reactions will also produce unsaturated hydrocarbons, ketones and aldehydes in the ionized atmosphere.  相似文献   

7.
High-affinity nitrate transport was examined in intact root hair cells of Arabidopsis thaliana using electrophysiological recordings to characterise the response of the plasma membrane to NO 3 ? challenge and to quantify transport activity. The NO 3 ? -associated membrane current was determined using a three-electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in the roots of seedlings grown in the absence of a nitrogen source, but only 4–6 days postgermination. In 6-day-old seedlings, additions of 5–100 μm NO 3 ? to the bathing medium resulted in membrane depolarizations of 8–43 mV, and membrane voltage (V m) recovered on washing NO 3 ? from the bath. Voltage clamp measurements carried out immediately before and following NO 3 ? additions showed that the NO 3 ? -evoked depolarizations were the consequence of an inward-directed current that appeared across the entire range of accessible voltages (?300 to +50 mV). Both membrane depolarizations and NO 3 ? -evoked currents recorded at the free-running voltage displayed quasi-Michaelian kinetics, with apparent values for Km of 23 ± 6 and 44 ± 11 μm, respectively and, for the current, a maximum of 5.1 ± 0.9 μA cm?2. The NO 3 ? current showed a pronounced voltage sensitivity within the normal physiological range between ?250 and ?100 mV, as could be demonstrated under voltage clamp, and increasing the bathing pH from 6.1 to 7.4–8.0 reduced the current and the associated membrane depolarizations 3- to 8-fold. Analyses showed a well-defined interaction between the kinetic variables of membrane voltage, pHo and [NO 3 ? ]o. At a constant pHo of 6.1, depolarization from ?250 to ?150 mV resulted in an approximate 3-fold reduction in the maximum current but a 10% rise in the apparent affinity for NO 3 ? . By contrast, the same depolarization effected an approximate 20% fall in the Km for transport as a function in [H+]o. These, and additional characteristics of the transport current implicate a carrier cycle in which NO 3 ? binding is kinetically isolated from the rate-limiting step of membrane charge transit, and they indicate a charge-coupling stoichiometry of 2(H+) per NO 3 ? anion transported across the membrane. The results concur with previous studies showing a high-affinity NO 3 ? transport system in Arabidopsis that is inducible following a period of nitrogen-limiting growth, but they underline the importance of voltage as a kinetic factor controlling NO 3 ? transport at the plant plasma membrane.  相似文献   

8.
Water stress is a primary limitation on plant growth. In previous studies, it has been found that ammonium enhances the tolerance of rice plants to water stress, but how water is related to nitrogen form and water stress remains unknown. To study the effects of nitrogen form (NH 4 + , NO 3 ? , and a mixture of NH 4 + and NO 3 ? ) on the growth and water absorption of rice (Oryza sativa L.) seedlings, a hydroponic experiment with water stress, simulated by the addition of polyethylene glycol (PEG, 10% w/v, MW 6000), was conducted in a greenhouse. The results showed that, compared with non-water stress, under water stress, the fresh weight of rice seedlings increased by 14% with NH 4 + nutrition, whereas it had decreased by about 20% with either NO 3 ? or mixed nitrogen nutrition. No significant difference was found in the transpiration rate of excised shoots or in xylem exudation of excised roots in NH 4 + supply between the two water situations, whereas xylem flow decreased by 57% and 24% under water stress in NO 3 ? and mixed nutrition, and root hydraulic conductivity decreased by 29% and 54% in plants in NH 4 + and NO 3 ? nutrition conditions, respectively. Although water absorption ability decreased in both NH 4 + and NO 3 ? nutrition, aquaporin activity was higher in NH 4 + than in NO 3 ? nutrition, regardless of water stress. We conclude that NH 4 + nutrition can improve water handling in rice seedlings and subsequently enhance their resistance to drought.  相似文献   

9.
Primary charge separation dynamics in four mutant reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides with increased midpoint potential of the primary electron donor P (M160LH, L131LH, M197FH, and M160LH + L131LH + M197FH) have been studied by femtosecond transient absorption spectroscopy at room temperature. The decay of the excited singlet state in the wild-type and mutant RCs is complex and has two main exponential components, which indicates heterogeneity of electron transfer rates or the presence of reverse electron transfer reactions. The radical anion band of monomeric bacteriochlorophyll BA at 1020 nm was first observed in transient absorbance difference spectra of single mutants. This band remains visible, although with somewhat reduced amplitude, even at delays up to tens of picoseconds when stimulated emission is absent and the reaction centers are in the P+H A ? state. The presence of this band in this time period indicates the existence of thermodynamic equilibrium between the P+B A ? HA and P+BAH A ? states. The data give grounds for assuming that the value of the energy difference between the states P*, P+B A ? HA, and P+BAH A ? at early times is of the same order of magnitude as the energy kT at room temperature. Besides, monomeric bacteriochlorophyll BA is found to be an immediate electron acceptor in the single mutant RCs, where electron transfer is hampered due to increased energy of the P+B A ? state with respect to P*.  相似文献   

10.
Labeled nitrogen (15?N) was applied to a soil-based substrate in order to study the uptake of N by Glomus intraradices extraradical mycelium (ERM) from different mineral N (NO 3 ? vs. NH 4 + ) sources and the subsequent transfer to cowpea plants. Fungal compartments (FCs) were placed within the plant growth substrate to simulate soil patches containing root-inaccessible, but mycorrhiza-accessible, N. The fungus was able to take up both N-forms, NO 3 ? and NH 4 + . However, the amount of N transferred from the FC to the plant was higher when NO 3 ? was applied to the FC. In contrast, analysis of ERM harvested from the FC showed a higher 15?N enrichment when the FC was supplied with 15NH 4 + compared with 15NO 3 ? . The 15?N shoot/root ratio of plants supplied with 15NO 3 ? was much higher than that of plants supplied with 15NH 4 + , indicative of a faster transfer of 15NO 3 ? from the root to the shoot and a higher accumulation of 15NH 4 + in the root and/or intraradical mycelium. It is concluded that hyphae of the arbuscular mycorrhizal fungus may absorb NH 4 + preferentially over NO 3 ? but that export of N from the hyphae to the root and shoot may be greater following NO 3 ? uptake. The need for NH 4 + to be assimilated into organically bound N prior to transport into the plant is discussed.  相似文献   

11.

Aims

Alkali stress (AS) is an important agricultural contaminant and has complex effects on plant metabolism, specifically root physiology. The aim of this study was to test the role of nitrogen metabolism regulation in alkali tolerance of rice variety 'Nipponbare'.

Methods

In this study, the rice seedlings were subjected to salinity stress (SS) or AS. Growth, the contents of inorganic ions, NH 4 + -nitrogen (free amino acids), and NO 3 ? -nitrogen in the stressed seedlings were then measured. The expression of some critical genes involved in nitrogen metabolism were also assayed to test their roles in the regulation of nitrogen metabolism during adaptation of rice variety 'Nipponbare' to AS.

Results

AS showed a stronger inhibiting effect on rice variety 'Nipponbare' growth than SS. AS may have more complex effects on nitrogen metabolism than SS.

Conclusions

Effects of AS on the nitrogen metabolism of rice variety 'Nipponbare' mainly comprised two mechanisms. Firstly, in roots, AS caused the reduction of NO 3 ? content, which caused two harmful consequences, the large downregulation of OsNR1 expression and the subsequent reduction of NH 4 + production in roots. On the other hand, under AS (pH, 9.11), almost all the NH 4 + was changed to NH3, which caused a severe deficiency of NH 4 + surrounding the roots. Both events might cause a severe deficiency of NH 4 + in roots. Under AS, the increased expression of several OsAMT family members in roots might be an adaptative response to the reduction of NH 4 + content in roots or the NH 4 + deficiency in rhizosphere. Also, the down-regulation of OsNADH-GOGAT and OsGS1;2 in roots might be due to NH 4 + deficiency in roots. Secondly, in shoots, AS caused a larger acuumulatiuon of Na+, which possibly affected photorespiration and led to a continuous decrease of NH 4 + production in shoots, and inhibited the expression of OsFd-GOGAT and OsGS2 in chloroplasts.  相似文献   

12.
Thylakoids were isolated from the leaves of three different plants (Pisum sativium L., Lactuca sativa L., and Raphanus sativus L.). The addition of HCO 3 ? to a suspension of salt-and HCO 3 ? -epleted thylakoids (suspended in salt-free medium) raised the rate of O2 evolution up to fourfold. This stimulation could be partially replaced by the addition of chloride or nitrate ions. However, the addition of HCO 3 ? in the presence of Cl? or NO 3 ? resulted in a higher stimulation of O2 evolution (sixfold in the presence of nitrate and sevenfold in the presence of chloride). On the other hand, the addition of HCO 3 ? to the thylakoids depleted from salt only raised the rate of O2 evolution by 10–15%, whereas 40–70% was obtained by the addition of nitrate or chloride ions. The fluorescence induction studies indicated a significant decrease in the yield of the variable fluorescence of the salt- and HCO 3 ? -depleted thylakoids. A partial increase in the fluorescence yield was obtained by the addition of HCO 3 ? alone. A typical fluorescence induction curves were obtained by the addition of HCO 3 ? in the presence of Cl? or NO 3 ? ions. The data obtained suggest a similar role for chloride and nitrate ions in O2 evolution in the Hill-reaction, which is restricted at the donor side of photosystem II, whereas bicarbonate plays its role at both sides (acceptor and donor sides). The presented data are those obtained for the thylakoids of P. sativium, which were more or less similar to those obtained for L. sativa and R. sativus.  相似文献   

13.
It has been pointed out that tea (Camellia sinensis (L.) O. Kuntze) prefers ammonium (NH 4 + ) over nitrate (NO 3 ? ) as an inorganic nitrogen (N) source. 15N studies were conducted using hydroponically grown tea plants to clarify the characteristics of uptake and assimilation of NH 4 + and NO 3 ? by tea roots. The total 15N was detected, and kinetic parameters were calculated after feeding 15NH 4 + or 15NO 3 ? to tea plants. The process of N assimilation was studied by monitoring the dynamic 15N abundance in the free amino acids of tea plant roots by GC-MS. Tea plants supplied with 15NH 4 + absorbed significantly more 15N than those supplied with 15NO 3 ? . The kinetics of 15NH 4 + and 15NO 3 ? influx into tea plants followed a classic biphasic pattern, demonstrating the action of a high affinity transport system (HATS) and a low affinity transport system (LATS). The V max value for NH 4 + uptake was 54.5 nmol/(g dry wt min), which was higher than that observed for NO 3 ? (39.3 nmol/(g dry wt min)). KM estimates were approximately 0.06 mM for NH 4 + and 0.16 mM for NO 3 ? , indicating a higher rate of NH 4 + absorption by tea plant roots. Tea plants fed with 15NH 4 + accumulated larger amounts of assimilated N, especially glutamine (Gln), compared with those fed with 15NO 3 ? . Gln, Glu, theanine (Thea), Ser, and Asp were the main free amino acids that were labeled with 15N under both conditions. The rate of N assimilation into Thea in the roots of NO 3 ? -supplied tea plants was quicker than in NH 4 + -supplied tea plants. NO 3 ? uptake by roots, rather than reduction or transport within the plant, seems to be the main factor limiting the growth of tea plants supplied with NO 3 ? as the sole N source. The NH 4 + absorbed by tea plants directly, as well as that produced by NO 3 ? reduction, was assimilated through the glutamine synthetase-glutamine oxoglutarate aminotransferase pathway in tea plant roots. The 15N labeling experiments showed that there was no direct relationship between the Thea synthesis and the preference of tea plants for NH 4 + .  相似文献   

14.
Currents through batrachotoxin-modified sodium channels were measured by the voltage clamp method on the Ranvier node membrane. In experiments with replacement of Na+ in the external solution by K+ or NH 4 + the following series of permeabilities, determined as reversal potentials according to the equation of a static field, was obtained — PNa: \(P_{NH_4 }\) :PK=1:0.47:0.19. The relative permeability for H+ was determined by measuring currents after replacement of Na+ in the external solution by nonpenetrating choline ions and lowering pH to 3.7–3.8. The ratio pH/pNa for sodium channels modified by batrachotoxin averaged 528±46. Modified channels were less sensitive to the blocking action of H+ than normal sodium channels. The difference in the effective values of pK of the acid group of normal and modified channels was 0.40–0.45.  相似文献   

15.
Utilization of nitrogen in the form of either nitrate (NO 3 ? ) or ammonium (NH 4 + ) ions may affect the carbohydrate metabolism and energy budget of plants. Recent studies showed that greater expenses of NO 3 ? to NH 4 + reduction mostly occur in the roots and during darkness. Fertilization of corn with 15N-labeled nitrate and ammonium, combined with pulse labeling of plants in a 14CO2 atmosphere at the V6 and V8 growth stages, allowed us to evaluate the effect of N form on the CO2 efflux from soil. NH 4 + oxidation was inhibited by adding dicyandiamide. In respect to ammonium, nitrate addition increased root-derived CO2 efflux from corn by 2.6 times at stage V6 and by 1.8 times at stage V8. The time of peak 14CO2 efflux from soil also differed between two growing stages: at V6, efflux peaked only on the second day after pulse labeling, while at V8 this occurred within the first 6 h. The strong effect of NO 3 ? and NH 4 + on root respiration requires considering the N form in the soil and the nitrate reduction site location in a plant when modeling soil respiration changes and when separately estimating individual CO2 sources that contribute to the total soil CO2 efflux.  相似文献   

16.
The aim of this study was to determine from macroscopic current analysis how intracellular magnesium ions, Mg i 2+ , interfere with sodium channels of mammalian neurones. It is reported here that permeation across the sodium channel is voltage- and concentration-dependently reduced by Mg i 2+ . This results in a general reduction of sodium membrane conductance and an outward sodium peak current at large positive potentials. 30 mM Mg i 2+ leads to a negative shift of voltage dependence of sodium channel gating parameters, probably due to the surface potential change of the membrane. This shift alone is, however, insufficient to explain the reduction of outward sodium currents. The blockage by Mg i 2+ is decreased upon increasing intracellular or extracellular Na+ concentration, which suggests that Mg?' interferes with sodium permeation by competitively occupying sodium channels. Using a kinetic model to describe the sodium permeation, the dissociation constant (at zero membrane potential) of Mg i 2+ for the sodium channel has been calculated to be 8.65 ± 1.51 mM, with its binding site located at 0.26 ± 0.05 electrical distance from the inner membrane. This dissociation constant is smaller than that of Na i +, which is 83.76 ± 7.60 mM with its binding site located at 0.75 ± 0.23. The low dissociation constant of Mg i 2+ reflects its high affinity for the sodium channel.  相似文献   

17.
To test the hypothesis that rhizosphere acidification would enhance the hydrolyzation of organic phosphates by increasing phosphatase activity. A Petri dish experiment with sterile agar and a pot experiment with a low P soil were used. In the Petri dish experiment, roots of each plant were cultured in two compartments, each of which contained agar with one of three nitrogen combinations: NH 4 + /N0 (N0 = nitrogen free), NH 4 + /NO 3 - , and NO 3 - /N0. Phytin was supplied as the sole phosphorus (P) source to all compartments. In the pot experiment, the soil in each pot was treated with N0, KNO3, or (NH4)2SO4) together with 0 or 75 mg kg?1 phytin-P. Dry weight, P concentration, and P content of roots were highest in the NH 4 + compartments in the Petri dish experiment. In the pot experiment, dry weight, P concentration, and P content of both shoots and roots were higher with NH 4 + than with NO 3 - . NH 4 + treatments reduced rhizosphere pH, promoted the hydrolization of phytin, enhanced acid phosphatase activity in the rhizosphere, and increased phytin-P utilization relative to N0 and NO 3 - treatments. Phosphatase activity was negatively correlated with rhizosphere pH but was positively correlated with plant P content in both experiments. Rhizosphere acidification optimized the activity of acid phosphatase excreted by maize roots and promoted phytin mineralization. NH 4 + -induced acidification in the maize rhizosphere improved the growth of maize roots by improving P uptake from phytin; the improved growth, in turn, increased NH 4 + uptake and acidification.  相似文献   

18.
Using Raman spectrometry and fluorescence microscopy, we studied the rearrangement of carotenoid molecules and membrane-bound Ca mb 2+ in myelinated nerve fibers after K+ depolarization, K+-channel blocking, and altering the membrane protein conformation. We observed a decrease in Ca mb 2+ and an increase of microviscosity in myelin after depolarization. Changes in Ca mb 2+ and microviscosity were registered after blocking the K+ channels and modifying proteins with PCMB. Our results suggest an interconnection between the condition of nerve fiber membrane proteins, Ca mb 2+ distribution, and myelin microviscosity.  相似文献   

19.
The purpose of this 42-day study was to investigate the effects of dietary excess vanadium on immune function by determining changes of the subsets and proliferation function of peripheral blood T cells. Four hundred twenty 1-day-old avian broilers were divided into six groups and fed on a corn–soybean basal diet as control diet or the same diet amended to contain 5, 15, 30, 45, and 60 ppm vanadium supplied as ammonium metavanadate. In comparison with those of the control group, the percentages of CD 3 + , CD 3 + CD 4 + , and CD 3 + CD 8 + were decreased in 45 and 60 ppm groups from 14 to 42 days of age, and the percentages of CD 3 + and CD 3 + CD 4 + were increased in 5 ppm group at 42 days of age. The CD 4 + /CD 8 + ratio was increased in 45 and 60 ppm groups at 28 days of age. Meanwhile, the proliferation function of peripheral blood T cell were decreased in 30, 45, and 60 ppm groups from 14 to 42 days of age. Also, the serum interleukin-2 contents were decreased in 45 and 60 ppm groups from 14 to 42 days of age and increased in 5 ppm group at 28 days of age. Histopathologically, hypocellularity appeared in the thymus in 45 and 60 ppm groups. It was concluded that dietary vanadium in excess of 30 ppm reduced the percentages of peripheral blood T-cell subsets and the proliferation function and serum interleukin-2 contents. The cellular immune function was finally impaired in broilers.  相似文献   

20.
Extraction of Ca2+ from the oxygen-evolving complex of photosystem II (PSII) in the absence of a chelator inhibits O2 evolution without significant inhibition of the light-dependent reduction of the exogenous electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) on the reducing side of PSII. The phenomenon is known as “the decoupling effect” (Semin et al. Photosynth Res 98:235–249, 2008). Extraction of Cl? from Ca2+-depleted membranes (PSII[–Ca]) suppresses the reduction of DCPIP. In the current study we investigated the nature of the oxidized substrate and the nature of the product(s) of the substrate oxidation. After elimination of all other possible donors, water was identified as the substrate. Generation of reactive oxygen species HO, H2O2, and O 2 ·? , as possible products of water oxidation in PSII(–Ca) membranes was examined. During the investigation of O 2 ·? production in PSII(–Ca) samples, we found that (i) O 2 ·? is formed on the acceptor side of PSII due to the reduction of O2; (ii) depletion of Cl? does not inhibit water oxidation, but (iii) Cl? depletion does decrease the efficiency of the reduction of exogenous electron acceptors. In the absence of Cl? under aerobic conditions, electron transport is diverted from reducing exogenous acceptors to reducing O2, thereby increasing the rate of O 2 ·? generation. From these observations we conclude that the product of water oxidation is H2O2 and that Cl? anions are not involved in the oxidation of water to H2O2 in decoupled PSII(–Ca) membranes. These results also indicate that Cl? anions are not directly involved in water oxidation by the Mn cluster in the native PSII membranes, but possibly provide access for H2O molecules to the Mn4CaO5 cluster and/or facilitate the release of H+ ions into the lumenal space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号