首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested for rapid changes in photosynthate transport and partitioning in response to Lymantria dispar (L.) (Lepidoptera: Lymantriidae) (gypsy moth) herbivory in Populus nigra L. (Salicaceae). Transport and partitioning of [11C]-photosynthate from young mature leaves were measured in vivo before and 18 h after leaf chewing by gypsy moth larvae, which were caged on three older leaves. Following herbivory, there was an increase in export speed of recently fixed carbon from younger mature leaves. The increased export speed was due to a quicker transit time of 11C through the leaf, rather than a change in transport speed through the phloem. Additionally, basipetal partitioning of [11C]-photosynthate was increased following herbivory. Neither of these changes was observed in control plants. This enhancement of export occurs even though herbivores are well known to induce increases in carbon allocation to secondary metabolites within leaves. Our results demonstrate that the use of non-destructive imaging of 11C tracer is a powerful tool for examining plant responses to herbivory. Although the mechanisms underlying the rapid increase in carbon flux to stems and roots remain to be elucidated, our results raise the possibility of a coordinated whole plant response to herbivory. Thus, even when the herbivore specializes on only one plant tissue type, a whole plant approach may be key to understanding how plants respond to herbivory.  相似文献   

2.
In the sugar beet plant ( Beta vulgaris L. ssp. altissima ) the vascular bundles of old leaves lead to the center and those of young leaves to the periphery of the storage root. Whether the flux of assimilates follows these anatomical routes was tested by applying 14CO2 for 4 h to either an old (10th) or a young (20th) leaf in intact sugar beet plants. Four-month-old plants, which had about 30 leaves, were used in the experiment. The 14C distribution in the storage root was measured by autoradiography and counting in about 20 cross and longitudinal sections per root.
About 37% of assimilated 14C from an old leaf and 23% from a young leaf were exported within 24 h. Although some 14C moved into younger leaves, most was exported into the storage root. During its rapid movement towards the root tip, which took place perferentially in the orthostichon belonging to the [14C]-treated leaf, the label spread laterally.
The autoradiograms indicate that the distribution of assimilates within the storage root is roughly determined by the course of the vascular bundles extending from the source leaf. The fine distribution, however, seems to be controlled by sucrose gradients between storage cells.  相似文献   

3.
Photosynthesis, growth, and carbon partitioning of vigorous coppice shoots were compared with the slower growing intact shoots of Populus maximowiczii × nigra L. MN9 to determine the relationship between carbon partitioning and photosynthetic rate. Relative height growth rate of coppice shoots was 2.2 times that of intact shoots with net photosynthetic rate 1.9 times that of intact shoots. Coppice leaves exported a larger proportion of newly-fixed assimilate (11% compared with 6%) after a 4-h chase. The greater export from coppice leaves was correlated with a greater proportion of [14C]-labelled photosynthate deposited as starch in stems 4 cm below the point of label application. Coppice leaf assimilate levels were reduced to 15% that of leaves on intact plants, but coppice leaves had twice the concentration of labelled sucrose. Carbohydrates constituted 55% of the water-soluble [14C]-labelled photosynthate in leaves of coppice shoots compared with 40% in intact shoots. The results suggest that carbon allocation and partitioning in coppice shoots were altered towards production and export of new assimilate, and support the hypothesis that photosynthetic rate is responsive to sink demand for assimilates.  相似文献   

4.
The carbon allocation to current-year shoots of the deciduous Vaccinium uliginosum L. and the evergreen V. vitis-idaea L. was studied in a field experiment using 14C. During the first week after labelling, 0–50% and 30–80% of the initially assimilated 14C was lost in V. vitis-idaea and V. uliginosum respectively. Later on, the losses were smaller. After leaf fall in V. uliginosum , 30, 10 and 8% of the initially assimilated 14C was recovered in the abscised leaves, in plants labelled 1 July, 1 August and 1 September, respectively. The amounts found in the old V. vitis-idaea leaves the year after labelling were 33, 20 and 10%. Only traces of past-year assimilates were found in the current-year V. vitis-idaea leaves, while it was estimated that the V. uliginosum leaves contained 10–15% of the past-year label. It is concluded that V. vitis-idaea is mainly dependent on early summer assimilates - produced by leaves that have overwintered – for the current year shoot growth, while past-years' assimilates probably make an important contribution to the leaf expansion in V. uliginosum. When fruits occurred, a large fraction of the 14C assimilates was allocated to them.  相似文献   

5.
Whole bean plants, ev. Cockfield, grown in pots crowded or well-spaced (50 or 10 plants m2, respectively) were treated with 14CO2 at the pod-fill stage (25 modes) and the radioactivity in each leaf was determined after 30 min. With spaced plants the uptake was greatest in the mid-stem leaves and was proportional to leaf area. In contrast, 70% of the total assimilation took place in the upper six leaves of crowded plants and there was a steady decrease down the stem.
When 14CO2 was fed to single leaves of similar crowded plants the resultant distribution of labelled assimilates varied with the position of the treated leaf. After 6 h, 67% of the 14C fixed by a mid-stem leaf (node 13) was recovered from the beans, whereas 76% of that from an upper leaf (node 23) had accumulated along the stem. Due to the shading of mid-stem leaves at the higher planting densities, seed yield becomes increasingly dependent upon re-distribution of assimilates from stem to beans.  相似文献   

6.
The source:sink ratio of clonal white clover ( Trifolium repens L.) plants was manipulated by shading or removing leaves, and the consequences for carbon export from, and for the weight, area and net photosynthesis of, developing leaves were determined. When treatments were imposed just before young leaves usually change from C sinks to C sources, no effect on the point at which the sink-to-source transition occurred was observed, Leaves exported a similar proportion of the C they fixed, irrespective of stresses imposed upon the rest of the plant. However, differences in the destination of exported C were observed. More C moved to the stolon apex, and less to the stolon tissue itself, from leaves at Carlson stage 0.8 (leaflets about 60% unfolded) when mature leaves were removed or shaded. When 2 out of 3 mature leaves were removed from a stolon, short-term responses such as a 10% increase in net photosynthesis of the residual mature leaf, and greater export of C from this leaf to the apex, partially compensated very young leaves for loss of C supply. The result was that, when these young leaves were fully unfolded, they had similar surface area to those which had developed on undefoliated plants, but weighed nearly 20% less. Thus the immediate response to defoliation was an increase in the speeific leaf area [cm2 (g of dry weight)−1] of new leaves, and the assimilation rate (net photosynthesis×area) of these leaves remained unchanged.  相似文献   

7.
1. Changes of δ13C and its relation to leaf development, biochemical content and water stress were monitored over a 2 year period in two co-occurring Mediterranean oak species: the deciduous Quercus pubescens and the evergreen Quercus ilex .
2. The time course of leaf δ13C showed different patterns in the two species. Young Q. pubescens leaves had a high δ13C and a marked decrease occurred during leaf growth. In contrast, leaves at budburst and maturity did not differ significantly in the case of Q. ilex . We suggest that the difference between δ13C of young leaves was linked to differential use of reserves of carbon compounds in the two species.
3. δ13C values of mature leaves were negatively correlated with minimum seasonal values of predawn water potential, suggesting that a functional adjustment to water resources occurred.
4. There was a significant correlation between individual δ13C values for two successive years. This interannual dependence showed that δ13C rankings between trees were constant through time.  相似文献   

8.
The distribution pattern of 14C-sucrose from 14C-sucrose applied to vegetative okra plants and leaves 1–9 on separate plants during the green pod development stage were investigated in relation to duration and leaf position. Results indicated bi-directional transport of assimilates to both apical and basal portions of the stem. Within 48 h 14C moved to all plant parts; stem and leaves appeared to be strong sinks. In plants fed at the vegetative stage, 48 h after feeding, 66% of the fed activity was exported from the fed leaf. At the pod development stage, about 35% of the activity exported from the fed leaf was present in green pods and 65% in vegetative parts. In plants where leaf 1–9 was fed, irrespective of the position of the fed leaf, the subtending fruit was the strongest sink among the reproductive parts. Leaves and stems were the principal sinks.  相似文献   

9.
When whole plants were exposed to 14CO2, almost the same amount of radioactivity was taken up initially by each leaf regardless of its position on the stem and of the presence of beans at that node. Thus, although developing beans are a powerful sink for assimilated carbon, they do not increase the CO2 uptake by adjoining leaves.
The distribution of labelled assimilates 6 hours after feeding 14CO2 to a single leaf for 1 hour varied with both the position of the treated leaf and the stage of development of the plant. Before any flowers were set most of the radioactivity from all expanded leaves moved downwards to the roots and the stem below the treated leaf (lower stem). Later, during pod-fill, the upper leaves maintained this supply to the roots and lower stem, whilst most of the carbon translocated from the lower and mid-stem leaves went to the beans. However, we found no exclusive relationship between a leaf and the supply to beans developing on the same node.
The amount of radioactivity moving out of a source leaf at a fruiting node increased over successive samplings up to 48 h; the pattern of distribution of the 14CO2 however remained virtually unchanged.  相似文献   

10.
Abstract. Changes in crassulacean acid metabolism (CAM) in the leaves of Bryophyllum daigremontianum were studied comparatively under closely controlled (phytotron) and semi-natural (greenhouse) conditions utilizing measurements of natural carbon isotope composition (δ13C) of the total leaf matter. Abrupt transfer of plants from long days to short days resulted in an overall increase of CAM in mature leaves (no. 3 from the apex and older) and thus in a higher CAM level for the whole plant. Study during the course of a year in semi-natural conditions showed that a progressive increase in length of day and day night temperature differences (February ← June) activated CAM but only a passage to short days (June ← October) produced the maximum CAM. Under the experimental conditions employed, the maximum shift from the C3-type to the C4-type of metabolism was observed in plants subjected to semi-natural progressive variations in the environment, i.e. the δ13C values indicated that for plants in the greenhouse the total carbon flow entering the cells was mediated by phosphoenolpyruvate carboxylase activity.  相似文献   

11.
We evaluated diurnal and seasonal patterns of carbon isotope composition of leaf dark-respired CO2 ( δ 13Cl) in the C3 perennial shrub velvet mesquite ( Prosopis velutina ) across flood plain and upland savanna ecosystems in the south-western USA. δ 13Cl of darkened leaves increased to maximum values late during daytime periods and declined gradually over night-time periods to minimum values at pre-dawn. The magnitude of the diurnal shift in δ 13Cl was strongly influenced by seasonal and habitat-related differences in soil water availability and leaf surface vapour pressure deficit. δ 13Cl and the cumulative flux-weighted δ 13C value of photosynthates were positively correlated, suggesting that progressive 13C enrichment of the CO2 evolved by darkened leaves during the daytime mainly resulted from short-term changes in photosynthetic 13C discrimination and associated shifts in the δ 13C signature of primary respiratory substrates. The 13C enrichment of dark-respired CO2 relative to photosynthates across habitats and seasons was 4 to 6‰ at the end of the daytime period (1800 h), but progressively declined to 0‰ by pre-dawn (0300 h). The origin of night-time and daytime variations in δ 13Cl is discussed in terms of the carbon source(s) feeding respiration and the drought-induced changes in carbon metabolism.  相似文献   

12.
Leaf δ13C is an indicator of water-use efficiency and provides useful information on the carbon and water balance of plants over longer periods. Variation in leaf δ13C between or within species is determined by plant physiological characteristics and environmental factors. We hypothesized that variation in leaf δ13C values among dominant species reflected ecosystem patterns controlled by large-scale environmental gradients, and that within-species variation indicates plant adaptability to environmental conditions. To test these hypotheses, we collected leaves of dominant species from six ecosystems across a horizontal vegetation transect on the Tibetan Plateau, as well as leaves of Kobresia pygmaea (herbaceous) throughout its distribution and leaves of two coniferous tree species ( Picea crassifolia, Abies fabri ) along an elevation gradient throughout their distribution in the Qilian Mountains and Gongga Mountains, respectively. Leaf δ13C of dominant species in the six ecosystems differed significantly, with values for evergreen coniferous13C values of the dominant species and of K. pygmaea were negatively correlated with annual precipitation along a water gradient, but leaf δ13C of A. fabri was not significantly correlated with precipitation in habitats without water-stress. This confirms that variation of δ13C between or within species reflects plant responses to environmental conditions. Leaf δ13C of the dominant species also reflected water patterns on the Tibetan Plateau, providing evidence that precipitation plays a primary role in controlling ecosystem changes from southeast to northwest on the Tibetan Plateau.  相似文献   

13.
The photosynthetic rate of a decaploid genotype (1-16-2) of tall fescue ( Festuca arundinacea Schreb.) is about twice that of a common hexaploid genotype (V6-802) (Plant Physiol. 72: 16–21, 1983). Translocation of photosynthate out of the leaves is a possible means of regulating carbon assimilation. To evaluate this possibility, we have examined a) translocation velocity, b) time course of translocation from leaves, c) photoassimilate partitioning pattern into whole plants in pulse and chase experiments, and d) interveinal distances between two ploidy genotypes. Most of the 14C accumulated in sucrose, and the labelled carbon moved down the leaf blades at similar velocities (6 to 10 cm h−1) in both genotypes. Recent 14C assimilate was rapidly translocated from the fed area of the leaf blade. For example, the decaploid and the common hexaploid had translocated 40 and 26% of the 14C, respectively, at 6 h, and 79 and 49% of the 14C, respectively, at 24 h. Partitioning of 14C among plant organs was considerably different between the genotypes after a 24 h chase. For example, out of the total 14C recovered from the whole plant, the decaploid had retained 40% in the labelled leaf with 10, 33 and 29% in other leaves, stem bases and roots, respectively; whereas the hexaploid had retained 91% in the labelled leaf with 4, 3 and 2% in other leaves, stem bases and roots, respectively. However, the higher rate of translocation was correlated with greater interveinal distances in the decaploid genotype. These results suggested that the higher translocation percentage in the decaploid than the hexaploid genotype was due to greater sink activity.  相似文献   

14.
The sink demand was increased on a source maize leaf ( Zea mays L. cv. F7F2) by darkening all the leaves except the fourth, which was maintained under the prevailing irradiance conditions. The parameters of carbon metabolism were measured precisely during the first hours, and then daily during one week. The ambient photosynthetic activity and the maximum photosynthetic capacity were not altered by the treatment but the soluble carbohydrate and starch contents diminished, while ADP-glucose pyrophosphorylase (EC 2.7.7.27) activity increased. The carbon export rate, evaluated by the rate of disappearance of radioactivity after a 1-min 14CO2 pulse, was faster than in control leaves. A compartmental analysis of the time course of 14C export further indicated that the sucrose pool providing the export flux was largely increased by the dark treatment. The darkened leaf 5, taken as an example of the darkened sources, was completely depleted of its carbohydrate content after one day in the dark and remained devoid of carbohydrates during the following week.  相似文献   

15.
Corollas of Petunia hybrida (cv. Hit Parade Rosa) flowers fixed 14CO2 under both light and dark conditions. Rates of light fixation were much higher in mature pink corollas than in young, green corollas [57 and 9 nmol (ngchl)1 min-1], paralleling the development of chloroplasts in these tissues. Stomatal conductance in corollas was only 12% of that in green leaves, mainly due to the presence of few, and non-functioning stomata in the corolla. The activity and concentration of ribulose bisphosphate carboxylase (EC 4.1.1.39) in corolla extracts were only about 30% (per unit Chi) of those in extracts from green leaves. These results, together with previous results, might indicate a coordinated reduction in activity of systems participating in photosynthesis in corollas. The fixation products following a 6 s pulse with 14CO2, were typical of C, plants in both corollas and green leaves, but a higher level of β-carboxylation products was found in the corollas. The activity of phosphoenol-pyruvate carboxylase (EC 4.1.1.31) (per unit protein) was similar in both tissues. Although the total carbon fixed by the corolla constituted only a small part of the metabolites required for flower development, certain photosynthetic metabolites might have a regulatory role in flower development.  相似文献   

16.
Abstract: A continuous dual 13CO2 and 15NH415NO3 labelling experiment was undertaken to determine the effects of ambient (350μmol mol-1) or elevated (700μmol mol-1) atmospheric CO2 concentrations on C and N uptake and allocation within 3-year-old beech ( Fagus sylvatica L.) during leafing. After six weeks of growth, total carbon uptake was increased by 63 % (calculated on total C content) under elevated CO2 but the carbon partitioning was not altered. 56 % of the new carbon was found in the leaves. On a dry weight basis was the content of structural biomass in leaves 10 % lower and the lignin content remained unaffected under elevated as compared to ambient [CO2]. Under ambient [CO2] 37 %, and under elevated [CO2] 51 %, of the lignin C of the leaves derived from new assimilates. For both treatments, internal N pools provided more than 90 % of the nitrogen used for leaf-growth and the partitioning of nitrogen was not altered under elevated [CO2]. The C/N ratio was unaffected by elevated [CO2] at the whole plant level, but the C/N ratio of the new C and N uptake was increased by 32 % under elevated [CO2].  相似文献   

17.
The analysis of δ 13C and δ 18O in tree-ring archives offers retrospective insights into environmental conditions and ecophysiological processes. While photosynthetic carbon isotope discrimination and evaporative oxygen isotope enrichment are well understood, we lack information on how the isotope signal is altered by downstream metabolic processes.
In Pinus sylvestris , we traced the isotopic signals from their origin in the leaf water ( δ 18O) or the newly assimilated carbon ( δ 13C), via phloem sugars to the tree-ring, over a time-scale that ranges from hours to a growing season.
Seasonally, variable 13C enrichment of sugars related to phloem loading and transport did lead to uncoupling between δ 13C in the tree-ring, and the c i/ c a ratio at the leaf level. In contrast, the oxygen isotope signal was transferred from the leaf water to the tree-ring with an expected enrichment of 27‰, with time-lags of approximately 2 weeks and with a 40% exchange between organic oxygen and xylem water oxygen during cellulose synthesis.
This integrated overview of the fate of carbon and oxygen isotope signals within the model tree species P. sylvestris provides a novel physiological basis for the interpretation of δ 13C and δ 18O in tree-ring ecology.  相似文献   

18.
The present study investigated the relative importance of leaf and root carbon input for soil invertebrates. Experimental plots were established at the Swiss Canopy Crane (SCC) site where the forest canopy was enriched with 13C depleted CO2 at a target CO2 concentration of c . 540 p.p.m. We exchanged litter between labelled and unlabelled areas resulting in four treatments: (i) leaf litter and roots labelled, (ii) only leaf litter labelled, (iii) only roots labelled and (iv) unlabelled controls. In plots with only 13C-labelled roots most of the soil invertebrates studied were significantly depleted in 13C, e.g. earthworms, chilopods, gastropods, diplurans, collembolans, mites and isopods, indicating that these taxa predominantly obtain their carbon from belowground input. In plots with only 13C-labelled leaf litter only three taxa, including, e.g. juvenile Glomeris spp. (Diplopoda), were significantly depleted in 13C suggesting that the majority of soil invertebrates obtain its carbon from roots. This is in stark contrast to the view that decomposer food webs are based on litter input from aboveground.  相似文献   

19.
This study aims to characterize the translocation of photosynthates within and from developing tall fescue ( Festuca arundinacea ) leaves at the time of transition from sink to source. The developing leaf contains a source, the exposed tip, and a sink, the growing basal portion. When the exposed tip of the developing blade is labelled with 14CO2, it exports photosynthates exclusively to sinks within the developing blade until the blade reaches 80% of its final length, when photosynthates begin to be exported from the blade and pass through the collar to reach the growing sheath and the next expanding leaf. Concurrently, the previous mature leaves reduce their level of photosynthate export to the developing blade; export stops as soon as the sheath of the developing leaf elongates beyond 10 mm. Export from the mature leaves to the growing sheath and to the next expanding leaf blade increases rapidly. Thus, in a developing tall fescue leaf blade photosynthate importation and exportation are exclusive events: the expanding blade imports photosynthate from mature leaves until it reaches 80% of its final length, then exportation begins and importation ceases.  相似文献   

20.
1. The influence of leaf thickness on internal conductance for CO2 transfer from substomatal cavity to chloroplast stroma ( g i) and carbon isotope ratio (δ13C) of leaf dry matter was investigated for some evergreen tree species from Japanese temperate forests. g i was estimated based on the combined measurements of gas exchange and concurrent carbon isotope discrimination.
2. Leaves with thicker mesophyll tended to have larger leaf dry mass per area (LMA), larger surface area of mesophyll cells exposed to intercellular air spaces per unit leaf area ( S mes) and smaller volume ratio of intercellular spaces to the whole mesophyll (mesophyll porosity).
3. g i of these leaves was correlated positively to S mes but negatively to mesophyll porosity. The variation in g i among these species would be therefore primarily determined by variation of the conductance in liquid phase rather than that in gas phase.
4. δ13C was positively correlated to mesophyll thickness and leaf nitrogen content on an area basis. However, g i values did not correlate to δ13C. These results suggest that difference in δ13C among the species was not caused by the variation in g i, but mainly by the difference in long-term photosynthetic capacity.
5. Comparison of our results with those of previous studies showed that the correlation between leaf thickness and g i differed depending on leaf functional types (evergreen, deciduous or annual). Differences in leaf properties among these functional types were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号