首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
JW Bae  DB Kim  JY Choi  HJ Park  JD Lee  DG Hur  SH Bae  da J Jung  SH Lee  UK Kim  KY Lee 《PloS one》2012,7(8):e42463
Hearing loss, which is genetically heterogeneous, can be caused by mutations in the mitochondrial DNA (mtDNA). The A1555G mutation of the 12S ribosomal RNA (rRNA) gene in the mtDNA has been associated with both aminoglycoside-induced and non-syndromic hearing loss in many ethnic populations. Here, we report for the first time the clinical and genetic characterization of nine Korean pedigrees with aminoglycoside-induced and non-syndromic hearing loss. These Korean families carry in the A1555G mutation of 12S rRNA gene and exhibit variable penetrance and expressivity of hearing loss. Specifically, the penetrance of hearing loss in these families ranged between 28.6% and 75%, with an average of 60.8%. These results were higher than the 29.8% penetrance that was previously reported in a Chinese population but similar to the 65.4% and 54.1% penetrance observed in a large Arab-Israeli population and nineteen Spanish pedigrees, respectively. The mutational analysis of the complete mtDNA genome in these families showed that the haplogroups of the Korean population, which belongs to the eastern Asian population, were similar to those of the Chinese population but different from the Spanish population, which belongs to the European-Caucasian population. The mtDNA variants that may act as modifier factors were also found to be similar to the Chinese population. Although the mtDNA haplogroups and variants were similar to the eastern Asian population, we did find some differing phenotypes, although some subjects had the same variants. This result suggests that both the ethnic background and environmental factors lead to a variable phenotype of the A1555G mutation.  相似文献   

2.
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of four Chinese pedigrees with aminoglycoside-induced and nonsyndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss (5.2%, 4.8%, 4.2%, and 13.3%, respectively, and with an average 8% penetrance). In particular, four of all five affected matrilineal relatives of these pedigrees had aminoglycoside-induced hearing loss. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical homoplasmic A1555G mutation, associated with hearing impairment in many families from different genetic backgrounds. The fact that mtDNA of those pedigrees belonged to different haplogroups R9a, N9a, D4a, and D4 suggested that the A1555G mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these Chinese families. These data imply that the nuclear background or/and mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycoside appears to be a major modifier factor for the phenotypic manifestation of the A1555G mutation in these Chinese families.  相似文献   

3.
Multiple Origins of a Mitochondrial Mutation Conferring Deafness   总被引:2,自引:0,他引:2       下载免费PDF全文
A point mutation (1555G) in the smaller ribosomal subunit of the mitochondrial DNA (mtDNA) has been associated with maternally inherited traits of hypersensitivity to streptomycin and sensorineural deafness in a number of families from China, Japan, Israel, and Africa. To determine whether this distribution was the result of a single or multiple mutational events, we carried out genetic distance analysis and phylogenetic analysis of 10 independent mtDNA D-loop sequences from Africa and Asia. The mtDNA sequence diversity was high (2.21%). Phylogenetic analysis assigned 1555G-bearing haplotypes at very divergent points in the human mtDNA evolutionary tree, and the 1555G mutations occur in many cases on race-specific mtDNA haplotypes, both facts are inconsistent with a recent introgression of the mutation into these races. The simplest interpretation of the available data is that there have been multiple origins of the 1555G mutation. The genetic distance among mtDNAs bearing the pathogenic 1555G mutation is much larger than among mtDNAs bearing either evolutionarily neutral or weakly deleterious nucleotide substitutions (such as the 4336G mutation). These results are consistent with the view that pathogenic mtDNA haplotypes such as 1555G arise on disparate mtDNA lineages which because of negative natural selection leave relatively few related descendants. The co-existence of the same mutation with deafness in individuals with very different nuclear and mitochondrial genetic backgrounds confirms the pathogenicity of the 1555G mutation.  相似文献   

4.
Tang X  Yang L  Zhu Y  Liao Z  Wang J  Qian Y  Tao Z  Hu L  Wu G  Lan J  Wang X  Ji J  Wu J  Ji Y  Feng J  Chen J  Li Z  Zhang X  Lu J  Guan MX 《Gene》2007,393(1-2):11-19
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic and molecular characterizations of seven Han Chinese pedigrees with aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the variable phenotype of hearing impairment including severity, age-at-onset and audiometric configuration in these subjects. The penetrance of hearing loss in these pedigrees ranged from 3% to 29%, with an average of 13.6%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees varied from 0% to 17%, with an average of 5.3%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA A1555G mutation, in addition to distinct sets of mtDNA polymorphism belonging to East Asian haplogroups B4, D4, D5 and F1, respectively. This suggested that the A1555G mutation occurred sporadically and multiplied through evolution of the mtDNA in China. Despite the presence of several evolutionary conservative variants in protein-encoding genes, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these seven Chinese families. These suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the A1555G mutation in those Chinese families with very low penetrance of hearing loss. However, aminoglycosides appear to be a major modifier factor for the phenotypic manifestation of the A1555G mutation in these Chinese families.  相似文献   

5.
Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of ~3.96% for the 1555A>G mutation in this hearing–impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30 years old, with the average of 14.5 years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient’s mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G>A of haplogroup C, 14693A>G of haplogroups Y2 and F, and 15908T>C of Y2 may enhance the penetrace of hearing loss in these Chinese families. Moreover, the absence of mutation in nuclear modifier gene TRMU suggested that TRMU may not be a modifier for the phenotypic expression of the 1555A>G mutation in these Chinese families. These observations suggested that mitochondrial haplotypes modulate the variable penetrance and expressivity of deafness among these Chinese families.  相似文献   

6.
Complete sequencing of 62 mitochondrial DNAs (mtDNAs) belonging (or very closely related) to haplogroup H revealed that this mtDNA haplogroup--by far the most common in Europe--is subdivided into numerous subhaplogroups, with at least 15 of them (H1-H15) identifiable by characteristic mutations. All the haplogroup H mtDNAs found in 5,743 subjects from 43 populations were then screened for diagnostic markers of subhaplogroups H1 and H3. This survey showed that both subhaplogroups display frequency peaks, centered in Iberia and surrounding areas, with distributions declining toward the northeast and southeast--a pattern extremely similar to that previously reported for mtDNA haplogroup V. Furthermore, the coalescence ages of H1 and H3 (~11,000 years) are close to that previously reported for V. These findings have major implications for the origin of Europeans, since they attest that the Franco-Cantabrian refuge area was indeed the source of late-glacial expansions of hunter-gatherers that repopulated much of Central and Northern Europe from ~15,000 years ago. This has also some implications for disease studies. For instance, the high occurrence of H1 and H3 in Iberia led us to re-evaluate the haplogroup distribution in 50 Spanish families affected by nonsyndromic sensorineural deafness due to the A1555G mutation. The survey revealed that the previously reported excess of H among these families is caused entirely by H3 and is due to a major, probably nonrecent, founder event.  相似文献   

7.
Thirty-five mitochondrial (mt) DNAs from Spain that harbor the mutation A3243G in association with either MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome or a wide array of disease phenotypes (ranging from diabetes and deafness to a mixture of chronic progressive external ophthalmoplegic symptoms and strokelike episodes) were studied by use of high-resolution restriction fragment length polymorphism analysis and control-region sequencing. A total of 34 different haplotypes were found, indicating that all instances of the A3243G mutation are probably due to independent mutational events. Haplotypes were distributed into 13 haplogroups whose frequencies were close to those of the general Spanish population. Moreover, there was no statistically significant difference in haplogroup distribution between patients with MELAS and those with disease phenotypes other than MELAS. Overall, these data indicate that the A3243G mutation harbors all the evolutionary features expected from a severely deleterious mtDNA mutation under strong negative selection, and they reveal that European mtDNA backgrounds do not play a substantial role in modulating the mutation's phenotypic expression.  相似文献   

8.
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of 16 Chinese pedigrees (a total of 246 matrilineal relatives) with aminoglycoside-induced impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: being bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss, ranging from 4% to 18%, with an average of 8%. In particular, nineteen of 246 matrilineal relatives in these pedigrees had aminoglycoside-induced hearing loss. Mutational analysis of the mtDNA in these pedigrees showed the presence of homoplasmic 12S rRNA A1555G mutation, which has been associated with hearing impairment in many families worldwide. The extremely low penetrance of hearing loss in these Chinese families carrying the A1555G mutation strongly supports the notion that the A1555G mutation itself is not sufficient to produce the clinical phenotype. Children carrying the A1555G mutation are susceptible to the exposure of aminoglycosides, thereby inducing or worsening hearing impairment, as in the case of these Chinese families. Using those genetic and molecular approaches, we are able to diagnose whether children carry the ototoxic mtDNA mutation. Therefore, these data have been providing valuable information and technology to predict which individuals are at risk for ototoxicity, to improve the safety of aminoglycoside therapy, and eventually to decrease the incidence of deafness.  相似文献   

9.
We report here the clinical, genetic, and molecular characterization of two Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects. Penetrances of hearing loss in BJ105 and BJ106 pedigrees are 67% and 33%, respectively. In particular, three of 10 affected matrilineal relatives of BJ105 pedigree had aminoglycoside-induced hearing loss, while seven affected matrilineal relatives in BJ105 pedigree and six affected matrilineal relatives in BJ106 pedigree did not have a history of exposure to aminoglycosides. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the identical homoplasmic A1555G mutation and distinct sets of mtDNA variants belonging to haplogroups F3 and M7b. These variants showed no evolutionary conservation, implying that mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycosides and nuclear backgrounds appear to be major modifier factors for the phenotypic manifestation of the A1555G mutation in these Chinese families.  相似文献   

10.
线粒体DNA G7444A突变可能影响A1555G突变的表型表达   总被引:2,自引:2,他引:0  
线粒体12S rRNA和tRNASer(UCN) 基因是导致非综合征型听力损失的两个突变热点区域。作者收集了1个母系遗传感音神经性聋家系, 该家系同时携带线粒体DNA (mtDNA) A1555G和G7444A突变。临床资料分析表明, 该家系包括药物致聋的耳聋外显率(所有耳聋患者/所有母系成员)为58%, 而非药物致聋的耳聋外显率(非药物性聋患者/所有母系成员)为25%, 明显高于其他携带A1555G突变的耳聋家系。先证者的线粒体全序列分析表明, 该线粒体基因组共有28个多态位点, 属于东亚人群B4c1单体型。在这些多态位点中, 除A1555G和G7444A突变外, 未发现其他有功能意义的突变。这表明mtDNA G7444A突变可能加重由A1555G突变造成的线粒体功能缺失, 从而增加耳聋的外显率。  相似文献   

11.
Maternally inherited deafness associated with the A1555G mutation in the mitochondrial 12S ribosomal RNA (rRNA) gene appears to require additional environmental or genetic changes for phenotypic expression. Aminoglycosides have been identified as one such environmental factor. In one large Arab-Israeli pedigree with congenital hearing loss in some of the family members with the A1555G mutation and with no exposure to aminoglycosides, biochemical evidence has suggested the role of nuclear modifier gene(s), but a genomewide search has indicated the absence of a single major locus having such an effect. Thus it has been concluded that the penetrance of the mitochondrial mutation appears to depend on additive effects of several nuclear genes. We have now investigated 10 multiplex Spanish and Italian families with 35 members with the A1555G mutation and sensorineural deafness. Parametric analysis of a genomewide screen again failed to identify significant evidence for linkage to a single autosomal locus. However, nonparametric analysis supported the role of the chromosomal region around marker D8S277. The combined maximized allele-sharing LOD score of 3.1 in Arab-Israeli/Spanish/Italian families represents a highly suggestive linkage result. We suggest that this region should be considered a candidate for containing the first human nuclear modifier gene for a mitochondrial DNA disorder. The locus operates in Arab-Israeli, Spanish, and Italian families, resulting in the deafness phenotype on a background of the mitochondrial A1555G mutation. No obvious candidate genes are located in this region.  相似文献   

12.
摘要: 国内外研究表明GJB2、SLC26A4(PDS)和线粒体DNA(Mitochondrial DNA, mtDNA)的病理性突变导致了大部分的遗传性聋。 文章收集了2006年4月~2007年9月接受人工耳蜗(Cochlear implant, CI)植入的14 例患儿及其父母的外周血, 应用基因诊断方法进行 GJB2、SLC26A4(PDS)和mtDNA 1555位点突变检测。结果显示, 35.7%的患儿检测到致病突变, 其中28.6%为GJB2基因突变, 类型均为235delC纯和突变, 其父母为携带GJB2 235delC的杂和子; 7.1%为mtDNA A1555G突变, 其母亲亦携带mtDNA A1555G突变。这表明CI 植入聋儿最常见的基因突变是GJB2 235delC突变, 其次是mtDNA A1555G突变, 通过对耳聋家系常见致病基因的检测和家系分析, 可以对优生优育及减少耳聋发病率提供科学准确的遗传信息。  相似文献   

13.
Mitochondrial DNA mutations are undoubtedly a factor that contributes to sensorineural, non-syndromic deafness. One specific mutation, the A1555G, is associated with both aminoglycoside-induced and non-syndromic hearing impairment. The mutation is considered to be the most common of all mitochondrial DNA deafness-causing mutations but its frequency varies between different populations. Here we report on the first large screening of the A1555G mitochondrial DNA mutation in the Greek population. The aim of this study was to determine the frequency of the A1555G mutation in Greek sensorineural, non-syndromic deafness patients, with childhood onset. We screened 478 unrelated Greek patients with hearing loss of any degree and found two individuals harboring the A1555G mutation (0.42%). Both cases had been subjected to aminoglycosides. They were prelingual, familial and homoplasmic for the A1555G mutation. One of the cases was also found heterozygous for the frequent GJB2 35delG mutation, while the other case was negative. The A1555G mutation seems to be less common than in other European populations.  相似文献   

14.
Mutations in the mitochondrial DNA are one of the most important causes of sensorineural hearing loss, especially in the 12S ribosomal RNA (rRNA) gene. We have analyzed the mtDNA 12S rRNA gene in a cohort of 443 families with hearing impairment, and have identified the A1555G mutation in 69 unrelated cases. A1555G is not a fully penetrant change, since only 63% of subjects with this change have developed hearing impairment. In addition, only 22% of the 183 A1555G deaf subjects were treated with aminoglycosides. Two novel nucleotide changes (T1291C and T1243C) were identified. T1243C was found in five deafness cases and one control sample. Mutation T1291C was detected in all maternally related individuals of a pedigree and in none of 95 control samples. Conservation analysis and comparison of the 12S rRNA structure with the 16S rRNA of Escherichia coli showed that the T at nucleotide 1243 and A at nucleotide 1555 are conserved positions. Prediction of RNA secondary structure showed changes in all 12S rRNA variants, the most severe being for T1291C. The reported data confirm the high prevalence of mutation A1555G in deafness cases and the major role of the 12S rRNA gene in hearing. The two novel changes reported here might have different contributions as deafness-related variants. T1291C fulfills the criteria of a disease-causing change. As in the case of mutation A1555G, the underlying phenotype of T1291C is not homogeneous for all family members, providing evidence for the implication of environmental and/or additional genetic factors.  相似文献   

15.
Over the last decade, a number of distinct mutations in the mtDNA (mitochondrial DNA) have been found to be associated with both syndromic and non-syndromic forms of hearing impairment. Their real incidence as a cause of deafness is poorly understood and generally underestimated. Among the known mtDNA mutations, the A1555G mutation in the 12S gene has been identified to be one of the most common genetic cause of deafness, and it has been described to be both associated to non-syndromic progressive SNHL (sensorineural hearing loss) and to aminoglycoside-induced SNHL. In the present study, we have investigated the presence of mtDNA alterations in patients affected by idiopathic non-syndromic SNHL, both familiar and sporadic, in order to evaluate the frequency of mtDNA alterations as a cause of deafness and to describe the audiological manifestations of mitochondrial non-syndromic SNHL. In agreement with previous studies, we found the A1555G mutation to be responsible for a relevant percentage (5.4%) of cases affected with isolated idiopathic sensorineural hearing impairment.  相似文献   

16.
We explored the mitochondrial 12S rRNA and the tRNASer(UCN) genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and the tRNASer(UCN) genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNASer(UCN) gene. We report here the first mutational screening of the mitochondrial 12S rRNA and the tRNASer(UCN) genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene.  相似文献   

17.
Mutations in mitochondrial DNA (mtDNA) are associated with sensorineural hearing loss. In this study, we traced the origin of the 12S rRNA C1494T mutation through analysis of the clinical, genetic, and molecular characteristics of 13 Han Chinese pedigrees with aminoglycoside-induced and non-syndromic bilateral hearing loss that were selected by C1494T screening in 3133 subjects with non-syndromic hearing impairment from 27 regions of China (13/3133). Clinical evaluation revealed the variable phenotypes of hearing impairment including severity, age-of-onset, and audiometric configuration in these subjects. Through the whole mitochondrial genome DNA sequence analysis, we identified two evolutionarily conservative variants in protein-coding genes: tRNAAla T 5628C and tRNATyr A5836G mutations. However, the pedigrees with these mutations did not have a higher or lower penetrance of deafness than in other pedigrees. These results suggested that both T 5628C and A5836G mutations might not significantly modify the manifestation of the C1494T mutation. Sequencing analysis of the whole mitochondrial genome of the probands showed that 13 pedigrees from seven different provinces were classified into 10 haplogroups by the distinct sets of mtDNA polymorphisms, including haplogroups A, B, D, D4, D4b2, F1, M, M7c, N9a1, and H2b. This result suggested that the C1494T mutation occurred sporadically with multi-origins through the evolution of the mtDNA in China, and these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the C1494T mutation in these Chinese families with different penetrance of hearing loss. In addition, the lack of a significant mutation in the GJB2 gene ruled out the possible involvement of GJB2 in the phenotypic expression of the C1494T mutation in those affected subjects. Therefore, the aminoglycosides is solo well-established factor to contribute to the deafness manifestation of the C1494T mutation, and prevention by avoiding the administration of aminoglycosides in individuals carrying C1494T mutation is the most effective way to protect their vulnerability to deafness.  相似文献   

18.
We report here the clinical, genetic, and molecular characterization of two Chinese families with aminoglycoside induced and non-syndromic hearing impairment. Clinical and genetic evaluations revealed the variable severity and age-of-onset in hearing impairment in these families. Strikingly, there were extremely low penetrances of hearing impairment in these Chinese families. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G7444A mutation associated with hearing loss. Indeed, the G7444A mutation in the CO1 gene and the precursor of tRNASer(UCN) gene is present in homoplasmy only in the maternal lineage of those pedigrees but not other members of these families and 164 Chinese controls. Their mitochondrial genomes belong to the Eastern Asian haplogroups C5a and D4a, respectively. In fact, the occurrence of the G7444A mutation in these several genetically unrelated subjects affected by hearing impairment strongly indicates that this mutation is involved in the pathogenesis of hearing impairment. However, there was the absence of other functionally significant mtDNA mutations in two Chinese pedigrees carrying the G7444A mutation. Therefore, nuclear modifier gene(s) or aminoglycoside(s) may play a role in the phenotypic expression of the deafness-associated G7444A mutation in these Chinese pedigrees.  相似文献   

19.
唐霄雯  李智渊  吕建新  朱翌  李荣华  王金丹  管敏鑫 《遗传》2008,30(10):1287-1294
摘要: 对1个中国汉族耳聋家系进行了临床和分子遗传学特征分析。家系中听力下降的母系成员表现为程度不等、听力图形态不同的听力损害, 但同为双侧对称的感觉神经性耳聋。该家系耳聋外显率很高, 包括药物致聋的耳聋外显率为75%, 而非药物致聋的外显率为41.7%。对母系成员进行线粒体DNA(mtDNA)全序列扩增分析, 发现了耳聋相关12S rRNA A1555G同质性突变位点和多态性位点, 属于东亚人群B5b单体型。在这些变异位点中, mtDNA 15927位点的G-A碱基变化破坏tRNAThr反密码子结构上十分保守的C-G碱基对, 这可能加重由A1555G突变造成的线粒体功能缺陷。这表明tRNAThrG15927A突变可能增强携带12S rRNA A1555G的中国汉族耳聋家系的外显率和表现度。  相似文献   

20.
We report here the clinical, genetic, and molecular characterization of three Chinese families (WZ4, WZ5, and WZ6) with Leber's hereditary optic neuropathy (LHON). Clinical and genetic evaluations revealed the variable severity and age-of-onset in visual impairment in these families. Penetrances of visual impairment in these Chinese families were 33.3%, 35.7%, and 35.5%, respectively, with an average 34.8%. Furthermore, the average age-at-onset in those Chinese families was 17, 20, and 18 years. In addition, the ratios between affected male and female matrilineal relatives in these Chinese families were 3:0, 1:1, and 1.2:1, respectively. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G11778A mutation associated with LHON in many families. The fact that mtDNA of those pedigrees belonged to different haplogroups F1, D4, and M10 suggested that the G11778A mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these Chinese families. The I187T mutation in the ND1, the S99A mutation in the A6, the V254I in CO3, and I58V in ND6 mutation, showing high evolutional conservation, may contribute to the phenotypic expression of the G11778A mutation in the WZ6 pedigree. By contrast, none of mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence in WZ4 and WZ5 pedigrees. Apparently, these variants do not have a potential modifying role in the development of visual impairment associated with G11778A mutation in those two families. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and expressivity of LHON in these three Chinese families carrying the G11778A mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号