首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Viruses may infect cells through clathrin-dependent, caveolin-dependent, or clathrin- and caveolin-independent endocytosis. Bovine papillomavirus type 1 (BPV1) entry into cells has been shown to occur by clathrin-dependent endocytosis, a pathway that involves the formation of clathrin-coated pits and fusion to early endosomes. Recently, it has been demonstrated that the closely related JC virus can enter cells in clathrin-coated vesicles and subsequently traffic to caveolae, the organelle where vesicles of the caveolin-dependent pathway deliver their cargo. In this study, we use immunofluorescence staining of BPV1 pseudovirions to show that BPV1 overlaps with the endosome marker EEA1 early during infection and later colocalizes with caveolin-1. We provide evidence through the colocalization of BPV1 with transferrin and cholera toxin B that BPVl trafficking may not be restricted to the clathrin-dependent pathway. Disrupting the entry of caveolar vesicles did not affect BPV1 infection; however, we show that blocking the caveolar pathway postentry results in a loss of BPV1 infection. These data indicate that BPV1 may enter by clathrin-mediated endocytosis and then utilize the caveolar pathway for infection, a pattern of trafficking that may explain the slow kinetics of BPV1 infection.  相似文献   

6.
Biorn AC  Bartleson C  Graves DJ 《Biochemistry》2000,39(51):15887-15894
Glycogen phosphorylase is found in resting muscle as phosphorylase b, which is inactive without AMP. Phosphorylation by phosphorylase kinase (PhK) produces phosphorylase a, which is active in the absence of AMP. PhK is the only kinase that can phosphorylate phosphorylase b, which in turn is the only physiological substrate for PhK. We have explored the reasons for this specificity and how these two enzymes recognize each other by studying site-directed mutants of glycogen phosphorylase. All mutants were assayed for changes in their interaction with a truncated form of the catalytic subunit of phosphorylase kinase, gamma(1-300). Five mutations (R69K, R69E, R43E, R43E/R69E, and E501A), made at sites that interact with the amino terminus in either phosphorylase b or a, showed little difference in phosphorylation by gamma(1-300) compared to wild-type phosphorylase b. Five mutations, made at three sites in the amino-terminal tail of phosphorylase (K11A, K11E, I13G, R16A, and R16E), however, produced decreases in catalytic efficiency for gamma(1-300), compared to that for phosphorylase b. R16E was the poorest substrate for gamma(1-300), giving a 47-fold decrease in catalytic efficiency. The amino terminus, and especially Arg 16, are very important factors for recognition of phosphorylase by gamma(1-300). A specific interaction between Lys 11 of phosphorylase and Glu 110 of gamma(1-300) was also confirmed. In addition, I13G and R16A were able to be phosphorylated by protein kinase A, which does not recognize native phosphorylase.  相似文献   

7.
Bovine papillomavirus E7 oncoprotein inhibits anoikis   总被引:1,自引:0,他引:1       下载免费PDF全文
The bovine papillomavirus type 1 (BPV-1) E7 oncoprotein is required for the full transformation activity of the virus. Although BPV-1 E7 by itself is not sufficient to induce cellular transformation, it enhances the abilities of the other BPV-1 oncogenes to induce anchorage independence. We have been exploring the mechanisms by which E7 might affect the transformation efficiency of other viral oncoproteins and in particular whether it might protect cells from apoptosis. We report here that BPV-1 E6 and E7 can each independently inhibit anoikis, a type of apoptosis that is induced upon cell detachment. Using site-directed mutagenesis, we determined regions of the E7 protein that were essential for its antiapoptotic activity. The ability of E7 to inhibit anoikis did partially correlate with an ability to enhance anchorage independence of BPV-1 E6-transformed cells. In addition, the antiapoptotic activity of E7 also only partially correlated with its ability to bind p600, a cellular protein that has previously been reported to play a role in anoikis. We conclude that the contribution of E7 to BPV-induced cellular transformation may involve its ability to inhibit anoikis but that additional functional activities must also be involved.  相似文献   

8.
Events that lead to viral infections include the binding of the virus to the target cells, internalization of the virus into the cells, and the ability of the viral genome to be expressed. These steps are mediated by cellular and viral proteins and are temporally regulated. The papillomavirus capsid consists of two virally encoded capsid proteins, L1 and L2. Much is known about the role of the major capsid protein L1 compared to what is known of the role of the L2 protein. We identified the interaction of the L2 protein with SNARE protein syntaxin 18, which mediates the trafficking of vesicles and their cargo between the endoplasmic reticulum, the cis-Golgi compartment, and possibly the plasma membrane. Mutations of L2 residues 41 to 44 prevented the interaction of L2 protein with syntaxin 18 in cotransfection experiments and resulted in noninfectious pseudovirions. In this paper, we describe that syntaxin 18 colocalizes with infectious bovine papillomavirus type 1 (BPV1) pseudovirions during infection but does not colocalize with the noninfectious BPV1 pseudovirions made with an L2 mutant at residues 41 to 44. We show that an antibody against BPV1 L2 residues 36 to 49 (alpha L2 36-49) binds to in vitro-generated BPV1 pseudoviral capsids and does not coimmunoprecipitate syntaxin 18- and BPV1 L2-transfected proteins. alpha L2 36-49 was able to partially or completely neutralize infection of BPV1 pseudovirions and genuine virions. These results support the dependence of syntaxin 18 during BPV1 infection and the ability to interfere with infection by targeting the L2-syntaxin 18 interaction and further define the infectious route of BPV1 mediated by the L2 protein.  相似文献   

9.
10.
11.
12.
13.
14.
The major transforming protein of bovine papillomavirus type 1 (BPV-1) is a small hydrophobic polypeptide, the E5 gene product, localized in the cellular membranes and modulating various pathways in the cell. Many studies have shown that reactive oxygen species (ROS) are essential in several biological processes, including cell transformation by oncogenes, but unregulated ROS are highly toxic to cells. We studied the effect of the bovine papillomavirus protein E5 and its mutants on the level of the superoxide radicals in the mouse fibroblast cell line C127. The superoxide level in C127 cells transfected with the E5-expressing plasmids were measured by nitroblue tetrazolium reduction. Relative concentrations of intracellular peroxide were determined by using 2,7-dichlorofluorescin diacetate. Our results showed that all transforming mutants of E5 reduced the level of superoxide in C127 cells, besides the activity of superoxide dismutase (SOD) and level of peroxides was not altered. In the presence of neopterin, an inhibitor of the superoxide-producing enzymes, the reduction of superoxide level correlated with the transforming ability of the E5-mutants. The inhibitor of the protein tyrosine kinase, tyrphostin 25 and inhibitors of oxygenases of the arachidonic acid metabolism, aspirin and nordihydroguaiaretic acid, blocked the effect of BPV-1 E5. We conclude that BPV-1 E5 and its transforming mutants are able to modulate the level of superoxide and stimulate the utilization of superoxide through protein tyrosine kinases and oxygenases of the arachidonic acid metabolism.  相似文献   

15.
PCR mutagenesis and a unique enrichment scheme were used to obtain two mutants, each with a single lesion in fimH, the chromosomal gene that encodes the adhesin protein (FimH) of Escherichia coli type 1 pili. These mutants were noteworthy in part because both were altered in the normal range of cell types bound by FimH. One mutation altered an amino acid at a site previously shown to be involved in temperature-dependent binding, and the other altered an amino acid lining the predicted FimH binding pocket.  相似文献   

16.
Papillomavirus E6 proteins are adapters that change the function of cellular regulatory proteins. The bovine papillomavirus type 1 E6 (BE6) binds to LXXLL peptide sequences termed LD motifs (consensus sequence LDXLLXXL) on the cellular protein paxillin that is a substrate of Src and focal adhesion kinases. Anchorage-independent transformation induced by BE6 required both paxillin and BE6-binding LD motifs on paxillin but was independent of the major tyrosine phosphorylation sites of paxillin. The essential role of paxillin in transformation by BE6 highlights the role of paxillin in the transduction of cellular signals that result in anchorage-independent cell proliferation.  相似文献   

17.
The studies described in this report were performed to determine, whether it is possible to produce live virus vaccines without serum or fractions thereof used during any cell or virus passage, thus completely serum-free. Two viruses were included in the experiments: Bovine Herpesvirus 1 (BHV-1) and Bovine Parainfluenza type 3 virus (PI3). Both viruses were found to grow to satisfactory titers, and to be stable after freeze-drying and subsequent storage at temperatures of +4 °C and −20 °C for at least one year. Moreover, a vaccine containing serum free produced BHV-1 was tested in a vaccination-challenge experiment. For comparison, a vaccine batch with BHV-1 grown in serum-containing cell culture medium was included in the study. Both vaccine preparations performed equally well and both met the strict requirements as laid down in the European Phamacopeia. Moreover, in two separate experiments the safety of serum-free produced BHV-1 and PI3 after overdose and repeated administration even in very young calves and even after four administrations has been demonstrated. This report is the first, which to our knowledge demonstrates the safety and efficacy of serum-free produced live vaccines in the target animal as well as the stability of these products. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

18.
The papillomavirus E1 replicative helicase is essential for replication and maintenance of extrachromosomal viral genomes in infected cells. We previously found that the bovine papillomavirus E1 protein is a substrate of the ubiquitin-dependent proteolytic pathway. Here we show that E1 is targeted for degradation by the anaphase-promoting complex (APC). Inhibition of APC activity by the specific inhibitor Emi1 or point mutations in the D-box and KEN-box motifs of E1 stabilize the protein and increase viral DNA replication in both a cell-free system and in living cells. These findings involve APC as the ubiquitin ligase that controls E1 levels to maintain a constant low copy number of the viral genome during latent infection.  相似文献   

19.
Papillomavirus E1 protein is the replication initiator that recognizes and binds to the viral origin and initiates DNA strand separation through its ATP-dependent helicase activity. The E1 protein also functions in viral DNA replication by recruiting several cellular proteins to the origin, including host DNA polymerase alpha and replication protein A. To identify other cellular proteins that interact with bovine papillomavirus E1, an HeLa cDNA library was screened using a yeast two-hybrid assay. The host cell sumoylating enzyme, Ubc9, was found to interact specifically with E1 both in vitro and in vivo. Mapping studies localized critical E1 sequences for interaction to amino acids 315-459 and strongly implicated leucine 420 as critical for E1.Ubc9 complex formation. In addition to binding E1, Ubc9 catalyzed the covalent linkage of the ubiquitin-like protein, SUMO-1, to E1. An E1 mutant unable to bind Ubc9 showed normal intracellular stability, but was impaired for intranuclear distribution. Failure to accumulate in appropriate nuclear subdomains may account for the previously demonstrated replication defect of a human papillomavirus 16 E1 protein that was also unable to bind Ubc9 and suggests that sumoylation is a functionally important modification with regulatory implications for papillomavirus replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号