首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—The conversion of [l-14C]palmitic acid to [1-14C]hexadecanol has been demonstrated with a cell-free system from developing rat brain. ATP, Coenzyme A and Mg2+ were required for the activity. Fatty aldehyde was found to be an intermediate in this reaction. The conversion of fatty acid to fatty alcohol was mainly localized in the microsomal fraction and the formation of hexadecanol showed absolute specificity towards NADPH while fatty aldehyde was formed even in the absence of exogenous reduced pyridine nucleotides. The brain microsomes showed maximal activity with stearic acid and the activities with palmitic and oleic acids were 65% and 38% respectively of that with stearic acid. This enzymic reduction increased with age and showed a maximum in the 15-day old rat brain.  相似文献   

2.
[1-14C]Oleic and [1-14C]linoleic acids were rapidly desaturated when incubated with maize leaves from 8-day-old plants and the labeled fatty acids, and their desaturation products, were rapidly incorporated into glycerolipids. Oleic acid was desaturated to linoleate at the rate of 0.7 nmol/100 mg tissue/h and further desaturated to linolenate at about one-third this rate. The rates of linolenate formation were similar when either oleic acid or linoleic acid was the substrate although there was a 2-h lag period when oleic acid was substrate. When radioactive oleic, linoleic, and linolenic acids were substrates, phosphatidylcholine was the most extensively labeled glycerolipid followed by monogalactosyldiacylglycerol. The relative rates of incorporation of label into individual glycerolipids are consistent with a movement of labeled fatty acids from phosphatidylcholine to monogalactosyldiacylglycerol and then to diagalactosyldiacylglycerol. The rates of labeling of phosphatidylcholine oleate and of phosphatidylcholine linoleate are consistent with a precursor-product relationship in that there was a delayed accumulation of phosphatidylcholine linoleate relative to that of phosphatidylcholine oleate and phosphatidylcholine linoleate continued to accumulate while phosphatidylcholine oleate declined. Linoleate formed from oleate was widely distributed in glycerolipids but neither phosphatidylcholine linolenate nor linolenate-containing diacylglycerol was detected at short and intermediate incubation times when either oleic or linoleic acid was substrate. The kinetics of incorporation of linoleate and linolenate into monogalactosyldiacylglycerol suggest a transfer of linoleate from phosphatidylcholine. The initial rate of accumulation of labeled linolenate in monogalactosyldiacylglycerol was very similar to the rate of desaturation of linoleate and it is suggested that desaturation of linoleate occurs while associated with monogalactosyl-diacylglycerol.  相似文献   

3.
—Adult rats were killed 16 h, 48 h, 6 days and 21 days after intracerebral application of n-[15,16-3H]tetracosanoic acid (lignoceric acid). After incorporation into complex lipids with a strong preference for the ester-bound fatty acids of glycerophospholipids, radioactivity decreased with time. The incorporated activity into the amide-bound fatty acids of sphingolipids was also shown to decrease, with exception of the cerebroside of the hydroxy fatty acid type (cerebron fraction). Only negligible amounts of labelled triglyceride and cholesterol ester could be detected. The fatty acids derived from the complex lipids were analysed by radio gas chromatography. It was revealed that some of the applied labelled lignoceric acid was hydroxylated and incorporated into the cerebron fraction while the rest had their chains shortened. In the latter case all even and odd numbered chain lengths down to C18 and C16 (stearic and palmitic acid) were detected. At this stage, the pool of the degradation products of lignoceric acid is stabilized by the preferred incorporation of fatty acids of these chain lengths into glycerophospholipids. A time-dependent desaturation to oleic acid from stearic acid was observed.  相似文献   

4.
Abstract— The distribution of radioactivity among lipids of subcellular membrane fractions was examined after intracerebral injections of [1-14C]oleic and [1-14C]arachidonic acids. Labelled free fatty acids were distributed among the synaptosomal-rich, microsomal, myelin and cytosol fractions at 1 min after injection. However, incorporation of the fatty acids into phospholipids and trïacylglycerols after pulse labelling occurred mainly in the microsomal and synaptosomal-rich fractions. With both types of labelled precursors, there was a higher percentage of radioactivity of diacyl-glycerophosphoryl-inositols in the synaptosomal-rich fraction as compared to the microsomal fraction. Radioactivity of [1-14C]oleic acid was effectively incorporated into the triacylglycerols in the microsomal fraction whereas radioactivity of the [1-14C]arachidonic acid was preferentially incorporated into the diacyl-glycerophosphorylinositols in the synaptosomal-rich fraction. Result of the study indicates that synaptosomal-rich fraction in brain is able to metabolize long chain free fatty acids in vivo and to incorporate these precursors into the membrane phosphoglycerides.  相似文献   

5.
Rabbit thymocytes were isolated and incubated for various lengths of time with concanavalin A. The cultures were pulsed for the last 12.5 min of incubation with equimolar mixtures of radioactively labelled fatty acids, either [3H]arachidonate and [14C]oleate or [3H]arachidonate and [14C]palmitate, and the uptake of each fatty acid into phospholipid of plasma membrane was determined. Upon binding of the mitogen, the fatty acids were incorporated at an increased rate with a new steady state being reached between 12.5 and 42.5 min after stimulation. Initially after 12.5 min, when the two fatty acids were added together, no preferential incorporation of the polyunsaturated fatty acid arachidonate was seen compared to the saturated or monounsaturated ones, palmitate or oleate. However shortly thereafter arachidonate, when compared to palmitate or oleate, started to be preferentially incorporated into plasma membrane phospholipid so that by 4 h after activation, only arachidonate was incorporated at an increased rate: the uptake of palmitate and oleate had reverted to that of unstimulated cells. In contrast, when palmitate or oleate were added alone, after 4 h of activation incorporation was increased similar to that of arachidonate, suggesting that all long chain fatty acids compete for the same activated enzyme(s). A detailed analysis of incorporation into phospholipid species showed that all fatty acids were taken up with the highest rate into phosphatidylcholine. After activation, fatty acid incorporation was increased by approx. 50% for phosphatidylcholine: the highest stimulation rates were observed with phosphatidylinositol (3–7-fold) and phosphatidylethanolamine (2–3-fold). The data suggest that shortly after stimulation with mitogens, the membrane phospholipids start to change by replacing saturated and monounsaturated fatty acids by polyunsaturated ones, thus creating a new membrane.  相似文献   

6.
The effect of hypoglycemia on the uptake of [1-14C]arachidonate and [1-14C]oleate into a synaptosomal and microsomal glycerophospholipids was investigated. In the presence of ATP, Mg2+ and CoA, rat brain synaptosomes and micorsomes catalyze the transfer of arachidonate and oleatc into glycerophospholipids. Arachidonate was mainly incorporated into phosphatidylinositol (PI) and phosphatidylcholine (PC), whereas oleate was incorporated into phosphatidylcholine and phosphatidylethanolamine (PE).Hypoglycemia was produced by intraperitoneal injection of 10 or 100 units of crystalline insulin per kg body weight. Two hours after injection the blood glucose level decreased to 10–20 mg%. The content of brain phospholipids was slightly decreased but the change was not statistically significant. The level of free fatty acids (FFA) was increased. More pronounced and reproducible changes were found when hypoglycemia was produced by injection of 100 units of insulin per/kg body weight. Changes in brain cortex were similar to those observed in microsomes and synaptosomes. Hypoglycemia affected the incorporation of arachidonic acid into glycerophospholipids of brain membranes. Uptake of [1-14C]arachidonate was decreased selectively by 50% (into phosphatidic acid /PA/) when hypogiycemia was produced by injection of 10 units of insulin per kg body weight. The Higher dose of insulin 100 units per kg body weight produced a 20% inhibition of arachidonate incorporation into synaptosomal PI and a 13% decrease of incorporation into microsomal phosphatidylcholine. Incorporation of [1-14C]oleate into membrane phospholipids was not changed by hypoglycemic insult. It is proposed that the disturbances in fatty acid level, particularly arachidonate, and decreased uptake of arachidonic acid by synaptosomal glycerophospholipids may be responsible for alteration of membrane function and changes of synaptic processes.  相似文献   

7.
1. 3-sn-Phosphatidylcholine was identified as the major lipid in cotyledons from the developing seeds of soya bean, linseed and safflower when tissue was steamed before lipid extraction. The proportion of oleate in this lipid decreased markedly and that of the polyunsaturated C18 fatty acids increased when detached developing cotyledons were incubated for up to 3h. Similar but less pronounced changes occurred in diacylglycerol, which had a fatty acid composition resembling that of the 3-sn-phosphatidylcholine from cotyledons of the same species. 2. [1-14C]Acetate supplied to detached cotyledons was incorporated into the acyl moieties of mainly 3-sn-phosphatidylcholine, 1,2-diacylglycerol and triacylglycerol. Initially label was predominantly in oleate, but subsequently entered at accelerating rates the linoleoyl moieties of the above lipids in soya-bean and safflower cotyledons and the linoleoyl and linolenyl moieties of these lipids in linseed cotyledons. In pulse–chase experiments label was rapidly lost from the oleate of 3-sn-phosphatidylcholine and accumulated in the linoleoyl and linolenoyl moieties of this phospholipid and of the di- and tri-acylglycerols. 3. [2-3H]Glycerol was incorporated into the glycerol moieties of mainly 3-sn-phosphatidylcholine and di- and tri-acylglycerols of developing linseed and soya-bean cotyledons. The label entered the phospholipid and diacylglycerol at rates essentially linear with time from the moment the substrate was supplied, and entered the triacylglycerol at an accelerating rate. With linseed cotyledons the labelled glycerol was incorporated initially mainly into species of 3-sn-phosphatidylcholine and diacylglycerol that contained oleate, but accumulated with time in more highly unsaturated species. In pulse–chase experiments with linseed cotyledons, label was lost from both 3-sn-phosphatidylcholine and diacylglycerol, preferentially from the dioleoyl species, and accumulated in triacylglycerol, mainly in species containing two molecules of linolenate. 4. The results suggest a rapid turnover of 3-sn-phosphatidylcholine during triacylglycerol accumulation in developing oilseeds, and are consistent with the operation of a biosynthetic route whereby oleate initially esterified to the phospholipid is first desaturated, then polyunsaturated fatty acids transferred to triacylglycerol, via diacylglycerol. The possible role of oleoyl phosphatidylcholine as a substrate for oleate desaturation is discussed.  相似文献   

8.
The distribution of [14C]-labelled material into subcellular fractions of 15-day-old rat brain was studied at 2 and 24 h following intraperitoneal and intracerebral injection of [2-14C]sodium acetate, [U-14C]glucose and [2-14C]mevalonic acid respectively. The total quantity of labelled isoprenoids in the brain was, except for glucose, greater when the precursor was administered intracerebrally. The intraperitoneal route was more advantageous in the case of [U-14C]glucose. The subcellular distribution of both labelled total isoprenoid material and sterol was distinct for each labelled precursor. Intracerebrally injected [U-14C]glucose at both time periods studied suggested no dominance of labelling in any fraction. After intraperitoneal injection of [U-14C]glucose the microsomes were more prominently labelled. Both methods of administration of sodium [2-14C]acetate resulted in heavy labelling of the myelin fraction after 24 h. The total labelled isoprenoids resided mainly in the microsomes 24 h after injection of [2-14C]mevalonic acid. Labelled sterol was found to be localized more in the myelin and microsomal fractions for all three precursors than was the labelled total isoprenoids. Depending on the type of experiment to be conducted, each of these precursors can give different results, which must be interpreted accordingly.  相似文献   

9.
Hans Kleinig  Bodo Liedvogel 《Planta》1979,144(5):473-477
The coronae of Narcissus pseudonarcissus flowers incorporated [1-14C]acetate almost exclusively into the fatty acid moieties of glycerolipids. After a 4 h incubation, the newly synthesized acids were: stearate plus palmitate (50%); oleate (17%); linoleate (32%); and linolenate (0.5%). Phosphatidylcholine and diacylglycerol were the principal labelled lipids. In pulse experiments these acids were further desaturated, with time, to an appreciable extent and, concurrently, transferred essentially from phosphatidylcholine to diacylglycerol, diacylgalactosylglycerol, and diacylgalabiosylglycerol. The labelling of diacylgalactosylglycerol and diacylgalabiosylglycerol paralleled the appearance of linolenate. The distribution of labelled acids in phosphatidylcholine, diacylgalactosylglycerol, and diacylgalabiosylglycerol was very different. The results were compared with those obtained in vitro with isolated coronae chromoplasts and discussed in relation to current schemes of fatty acid and glycerolipid synthesis in plant cells.  相似文献   

10.
Etiolated Cucumis sativus L. cotyledons preferentially catabolized exogenous [1-14C]oleic acid and [1-14C]linoleic acid with relatively little incorporation into complex lipids or desaturation of the 14C-labeled fatty acids. Following a 16-hour exposure to light, the greening cotyledons efficiently desaturated the exogenous 14C-labeled fatty acids. A small amount of oleate desaturation to linoleate was observed in etiolated tissue, but hardly any linoleate desaturation to α-linolenate was detected. Both oleate and linoleate desaturation showed diurnal variations with maxima at the end of light periods and minima at the end of dark periods. Illumination of etiolated tissue by flashing light, as opposed to continuous light, failed to stimulate either chlorophyll or α-linolenic acid biosynthesis, and both processes could be halted or reversed by 10 micrograms per milliliter cycloheximide. Production of polyunsaturated fatty acids from [1-14C]acetate, [1-14C]oleic acid, and [1-14C]linoleic acid, by greening cucumber cotyledons, was markedly affected by tissue integrity with finely chopped cotyledons having very little capacity for their synthesis and intact seedlings showing the highest rates.  相似文献   

11.
Exogenous [1-14C]oleic acid and [1-14C]linoleic acid were taken up and esterified to complex lipids by greening cucumber (Cucumis sativus L.) cotyledons. Both 14C-labeled fatty acids were initially esterified to phosphatidylcholine prior to eventual accumulation in triacylglycerols and galactolipids. Kinetic data suggest that esterification occurs prior to desaturation and that phosphatidylcholine is the initial site of both [14C]-oleate and [1-14C]linoleate esterification and of [1-14C]oleate desaturation to [1-14C]linoleate. [1-14C]Linoleic acid was esterified more rapidly than [14C]oleic acid and its desaturation product, [1-14C]α-linolenate, occurred mainly on monogalactosyl diacylglycerol, although some was also observed on the other major acyl lipids, including phosphatidylcholine.  相似文献   

12.
Abstract— The metabolism of a tricarboxylic acid cycle (cycle) intermediate, [1.4-'14C]succinate, was studied in the brain at 2 20 min after intracerebral injection. The oxidation of [14C]succinate was rapid, as shown by the incorporation of 14C into cycle amino acids which accounted for about 30 per cent and 70 per cent of the tissue -“Cat 2 and 10 min respectively. During the whole experimental period the specific radioactivity of glutamine was about three times higher than that of glutamate. Thus exogenous [14C]succinate elicited signs of metabolic compartmentation similar to those seen after the administration of short chain fatty acids or amino acids. A computer programme, based on data obtained previously on the metabolic compartmentation of acetate and of glucose in the brain, was used to simulate the kinetics of labelling of cycle amino acids after an input of [1.4-14C]succinate. The correspondence of the simulated data with the experimental results was good in the first 10 min after injection, although the deviations were significant at later time points. Incorporation of 14C into GABA was very low (< 1 per cent of the amino acid -14C) after the injection of [1.4-14C]succinate. Further, labelled GABA formation was not detected in the decapitated rat brain labelled in vivo with [1.4-14C]succinate 2 min beforehand. Since the oxidation of [l,4-14C]succinate via the cycle yields unlabellcd GABA. whereas the reversal of the reactions in the GABA bypath may introduce 14C from succinate into the GABA pool, the results indicate that this reversal is negligible even under the most favourable conditions, i.e. post mortem when both the NADH/NAD+ ratios and [14C]succinate concentrations arc high. The observations are therefore consistent with the view that glutamate is the predominant and probably the only source of GABA carbon in the brain both in vivo and post mortem.  相似文献   

13.
The effects of water stress on [1-14C]-oleic and [1-14C]-linoleic acid desaturations were studied in leaves of two varieties of cotton ( Gossypium hirsutum L.), one drought-sensitive (Reba) and the other more resistant (Mocosinho). After 24 h incorporation, [1-14C]-oleate led to the appearance of linoleate in phospholipids and, additionally, of linolenate in galactolipids. [1-14C]-Linoleate was desaturated to linolenate only in galactolipid fractions. Water stress markedly inhibited the incorporation of the precursors into the leaf lipids. The two desaturation steps were affected, particularly the transformation of linoleate to linolenate in monogalactosyldiacylglycerol in the drought-sensitive variety of cotton. The metabolic implications of the inhibition of the biosynthesis of C18-polyunsaturated fatty acids are discussed.  相似文献   

14.
Studies in vivo and in vitro of the distribution of label in C-1 of glutamate and glutamine and C-4 of aspartate in the free amino acids of brain were carried out. [1-14C]-Acetate was used both in vivo and in vitro and l -[U-14C]aspartate and l -[U-14C]glutamate were used in vitro.
  • 1 The results obtained with labelled acetate and aspartate suggest that CO2 and a 3-carbon acid may exchange at different rates on a COa-fixing enzyme.
  • 2 The apparent cycling times of both glutamate and glutamine show fast components measured in minutes and slow components measured in hours.
  • 3 With [1-14C]acetate in vitro glutamine is more rapidly labelled in C-1 than is glutamate at early time points; the curves cross over at about 7 min.
  • 4 The results support and extend the concept of metabolic compartmentation of amino acid metabolism in brain.
  相似文献   

15.
Abstract— Twenty-one-day old essential fatty acid (EFA) deprived rats incorporated about twice the radioactivity from [1-14C]linolenate into brain lipid fractions as did controls. At 5 min after injection, 2/3 of the radioactivity was associated with the less polar lipid fraction of both control and EFA deprived animals. By 30 min after injection, 70% of the radioactivity was in the phospholipid fraction. This value increased to 90% at later time points.
The specific activity of brain phospholipids from EFA deprived rats was always greater than that of controls. This held true for the individual phosphatide fractions also. In general, phosphatidylcholine (PC) was labeled most rapidly. With increasing time intervals, radioactivity was transferred to phospha-tidylethanolamine (PE) and phosphatidylserine + phosphatidylinositol (PS + PI).
The transfer of fatty acid radioactivity into phospholipid and the distribution of radioactivity among individual phosphatides did not appear to be affected by the dietary state. However, the total amount of radioactivity incorporated was related to the amount initially retained by brain after injection. Our data suggest that one or more components of the less polar lipid fraction may act as a 'trap' or reservoir for fatty acids which are required for phospholipid synthesis.  相似文献   

16.
—The incorporation of [1-14C]acetate into unesterified fatty acids and into the fatty acids of neutral glycerides and of phospholipids has been measured in rat cerebral cortex in vivo. The most rapid incorporation is seen in the unesterified fatty acids which have a turnover time of 5-6 min. It is suggested that unesterified fatty acids are precursors to neutral glycerides and phospholipids rather than being derived from them by lipase activity.  相似文献   

17.
dl-[2-14C]p-CHLOROPHENYLALANINE AS AN INHIBITOR OF TRYPTOPHAN 5-HYDROXYLASE   总被引:1,自引:0,他引:1  
The distribution in vivo of dl -[2-14C]p-chlorophenylalanine (p-CP) in regions and subcellular fractions of the rat brain was determined. The half-lives of p-CP and its metabolite p-chlorophenylpyruvic acid (p-CPPA) in plasma and brain were correlated with the development of inhibition of cerebral tryptophan 5-hydroxylase (EC 1.99.1.4). There was active transamination in vivo of p-CP and p-CPPA in the brain. Transport of indolealkylamino acids into brain was impaired by p-CP. Inhibition of tryptophan 5-hydroxylase could not be reversed by administration of large doses of l -tryptophan, l -tyrosine, or l -phenylalanine. After administration of [2-14C]p-CP in vivo, appreciable radioactivity was bound to cerebral proteins, including those with tryptophan 5-hydroxylase activity, as well as to phenylalanine 4-hydroxylase (EC 1.99.1.2) purified from liver. Amino acid analysis of the acid hydrolysate of purified, radioactive hepatic phenylalanine 4-hydroxylase showed over 80 per cent of the radioactivity to be present as p-CP. Neither the inhibition in vivo nor in vitro of tryptophan 5-hydroxylase could be reversed by dialysis; in controls, dialysis resulted in marked loss of enzyme activity. After incubation for 5 min with p-CP in vitro, enzymic activity was inhibited 60 per cent. In vitro, p-CPPA labelled protein much more extensively than p-CP, yet inhibited the enzyme less. Some of the label from p-CPPA was removable by dialysis.  相似文献   

18.
19.
The in vivo utilization ofd-3-hydroxy[3-14C]butyrate for oxidation in the whole animal and for lipid and amino acid synthesis in brain and spinal cord of overnight-fasted 15-day-old chicks has been measured. Appreciable amounts of injected 3-hydroxy[3-14C]butyrate were expired as14CO2 one hour after injection, the total amount of which increased with increasing dosages. Lipid synthesis was high in both brain and spinal cord. Free, cholesterol and phospholipids were the main lipids labeled in both, tissues, increasing with time after injection up to 120 min. The incorporation of radioactivity into triglycerides, esterified cholesterol and free fatty acids was not time-dependent. Increased concentrations of 3-hydroxybutyrate gave rise to higher synthetic rates both in brain and spinal cord The rate of amino acid synthesis was slightly higher in brain than in spinal cord. Glutamate was always the major amino acid formed.  相似文献   

20.
To investigate the incorporation of essential fatty acids into myelin components, 24-day-old rabbits were injected intracerebrally with [14C]linoleate, [14C]linolenate, or [3H]Myristate for comparison. Animals were killed 22 hr later and myelin was isolated. [3H]myristate labeled all myelin lipids including monogalactosyl diglyceride, with the exception of sulfatides. With14C-essential fatty acids, only glycerophospholipids were efficiently labeled and their specific activities were in the following decreasing orders: PC>PI>PE>PS with [14C]linoleate, and PE>PC>PI=PS with [14C]linolenate. Among myelin proteins, PLP and DM-20 were labeled with all 3 precursors. PLP was purified from myelin labeled with14C-essential fatty acids. The label was then cleaved from the protein by alkaline methanolysis and was identified as a dienoic ([14C]linoleate) or a tetraenoic ([14C]linolenate) fatty acid. MBP was not labeled with [3H]myristate, but was slightly labeled with both14C-essential fatty acids. The signification of the latter result is discussed.Abbreviations FA fatty acid(s) - HPTLC high-performance thin-layer chromatography - MBP myelin basic protein - PLP proteolipid protein - PC phosphatidylcholine - PE phosphatidylethanolamine and ethanolamine plasmalogens - PI phosphatidylinositol - PS phosphatidylserine - SDS sodium dodecylsulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号