首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The fermentation of large sugar cane chips (1.0–1.5 in) to ethanol by Zymomonas mobilis CP4 (Z. mobilis) was studied in two glass fermentors operating with culture circulation for agitation (the EX-FERM type): a. A laboratory scale(2.5 liter) cylindrical vessel; b. A bench scale (8 liter) wide vessel. Z. mobilis cultures consumed 89–96% of the cane sucrose, converting it to ethanol by 90–97% of the theoretical yield in the laboratory scale fermentor and by 83–90% in the bench scale fermentor culture. Comparative Saccharomyces spp. cultures in laboratory fermentor consumed 96–98% of the cane sucrose, with ethanol conversion of only 75–79% of the theoretical yield.These preliminary results indicated that sucrose in agricultural size sugar cane chips was ethanol fermentable as compared to small size sugar cane chips or to sugar cane juice. Z. mobilis CP4 cultures converted sucrose more efficiently to ethanol than Saccharomyces spp. as shown in the laboratory scale fermentor studies.The ethanol yields in a wide bench scale fermentor cultures were slightly lower than in a laboratory fermentor.  相似文献   

2.
Summary Studies on the growth ofZ.mobilis revealed that high concentrations of glucose (10-25%) can be efficiently and rapidly converted to ethanol in batch culture. By comparison withS. carlsbergensis,Z.mobilis had specific glucose uptake rates and specific ethanol productivies several times greater than the yeast.Z.mobilis also had ethanol yields of up to 97% of a theoretical value.  相似文献   

3.
Summary A broad pH range of 4.5–7.5 for maximum ethanol productivity and ethanol yield was observed with a passively immobilizedZ. mobilis system. Total retained biomass (as suspended flocs and entrapped cells) was >50 g/l for medium pH values between 4.0–8.0. The entrapped cells to suspended flocs ratio was highest at pH 4.0, whereas at pH above 5.2 it was close to 1.0. The observed enhancement of cell immobilization on the packing support at low pH seemed to be related to formation of bacterial filaments.  相似文献   

4.
Summary Two strains of Zymomonas mobilis were tested for their ability to ferment sucrose to ethanol at elevated temperatures (30–42.5°C). The optimal temperature for efficient sucrose to ethanol conversion was 35°C with 22–27 h fermentation time and 75% conversion efficiency. Increases in magnesium concentration improved one of the strains at 40°C from 38 to 76% ethanol yield efficiency.  相似文献   

5.
Continuous ethanol fermentations were performed in duplicate for 60 days withZymomonas mobilis ATCC 331821 orSaccharomyces cerevisiae ATCC 24859 in packed-bed reactors with polypropylene or plastic composite-supports. The plastic composite-supports used contained polypropylene (75%) with ground soybean-hulls (20%) and zein (5%) forZ. mobilis, or with ground soybean-hulls (20%) and soybean flour (5%) forS. cerevisiae. Maximum ethanol productivities of 536 gL–1 h–1 (39% yield) and 499 gL–1 h–1 (37% yield) were obtained withZ. mobilis on polypropylene and plastic composite-supports of soybean hull-zein, respectively. ForZ. mobilis, and optimal yield of 50% was observed at a 1.92h–1 dilution rate for soybean hull-zein plastic composite-supports with a productivity of 96gL–1h–1, whereas with polypropylene-supports the yield was 32% and the productivity was 60gL–1h–1. With aS. cerevisiae fermentation, the ethanol production was less, with a maximum productivity of 76gL–1h–1 on the plastic composite-support at a 2.88h–1 dilution rate with a 45% yield. Polypropylene-support bioreactors were discontinued due to reactor plugging by the cell mass accumulation. Support shape (3-mm chips) was responsible for bioreactor plugging due to extensive biofilm development on the plastic composite-supports. With suspensionculture continuous fermentations in continuously-stirred benchtop fermentors, maximum productivities of 5gL–1h–1 were obtained with a yield of 24 and 26% withS. cerevisiae andZ. mobilis, respectively. Cell washout in suspensionculture continuous fermentations was observed at a 1.0h–1 dilution rate. Therefore, for continuous ethanol fermentations, biofilm reactors out-performed suspension-culture reactors, with 15 to 100-fold higher productivities (gL–1h–1) and with higher percentage yields forS. cerevisiae andZ. mobilis, respectively. Further research is needed with these novel supports to evaluate different support shapes and medium compositions that will permit medium flow, stimulate biofilm formation, reduce fermentation costs, and produce maximum yields and productivities.This is Journal Paper No. J-16357 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

6.
Summary Zymomonas mobilis strain ZM4 was used for ethanol production from fructose (100 g/l) in continuous culture with a mineral (containing Ca pantothenate) or a rich (containing yeast extract) mediium. With both media high conversion yields were observed but the ethanol productivity was limited by the low biomass content of the fermentor. A new flocculent strain of Z.mobilis (ZM4F) was cultivated in a CSTR with an internal settler and showed a maximal productivity of 93 g/l.h (fructose conversion of 80%). When the fructose conversion was 96% an ethanol productivity of 85.6 g/l.h with an ethanol yield of 0.49 g/g (96% of theoretical) was observed.  相似文献   

7.
Summary Plasmids fromZ. mobilis could be stably maintained inE. coli HB101 in which the expression of various drug resistance markers could be monitored. A large molecular weight plasmid (5.2 kbp) ofZ. mobilis was found to harbour the genes for mercuric chloride degradation and to confer uponE. coli, resistance to a higher mercuric chloride concentration as compared toZ. mobilis. The introduction of this plamsid madeE. coli sensitive to concentrations of cadmium acetate which were originally non-inhibitory to it.  相似文献   

8.
Summary The possibility of using polyurethane foam as a support for the immobilization ofZymomonas mobilis cells to carry out sucrose conversion to ethanol was investigated. Sucrose hydrolysis efficiencies of 90% and higher, volumetric reactor productivity of 20 gL–1h–1 and final ethanol concentration of 6.3% (v/v) at a dilution rate of 0.4 h–1 show the good performance of polyurethane foams for whole cell immobilization.  相似文献   

9.
Summary Two mutants, unable to utilize fructose (Fru) as a sole source of carbon and energy, were isolated fromZymomonas mobilis following ethyl methane sulfonate (EMS) mutagenesis. The frequency of stable Fru mutants among survivors of mutagenesis was 1 in 104. The two Fru mutants were able to cleave sucrose to glucose and fructose, and then ferment only the glucose to ethanol while accumulating fructose close to the theoretical value. Under controlled fermentation conditions, sucrose was converted to ethanol plus 80% or higher purity fructose syrup in a single-stage batch fermentation process, improving the Sucrotech Process significantly.  相似文献   

10.
Summary Among various antimicrobial plant extracts, chemicals and antibiotics used for simultaneous saccharification and fermentation, penicillin G prevented contamination and did not inhibit amylase activity and growth of the synergistic co-cultures Saccharomyces cerevisiae PH03 and Zymomonas mobilis ZM4 during a 7-day fermentation of paddy malt (25.0%) mash (18.0% dextrose equivalent) to ethanol at 30°C and pH 5.5. The treatment yielded 10.1% (v/v) ethanol from the mash which was significantly more than that of the boiled and fermented mash (9.3% v/v) and equal to that of the mash boiled and fermented (10 2% v/v) after added amylases treatment. Most of the other compounds (kanamycin, streptomycin, polymyxin, tetracycline) had growth inhibitory effect especially on Z.mobilis.  相似文献   

11.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

12.
Summary In a mineral salts medium containing yeast extract, NH4Cl and glucose (50g/L), the pH range producing the fastest growth ofZ. mobilis was 5.5–6.5 with an apparent optimum at 6.5. At constant growth rate of 0.15hr–1, the specific rates of glucose utilization (qs) and ethanol production (qp) were relatively unaffected by pH over the range 7.0–5.5 but increased sharply as the pH was further decreased below 5.5 to 4.0. Under these conditions the ethanol yield was unaffected by pH over the range 4.0–6.5 but decreased markedly at pH of 7.  相似文献   

13.
Summary Whole cells of Saccharomyces bayanus, Saccharomyces cerevisiae and Zymomonas mobilis were immobilized by chelation/metal-link processes onto porous inorganic carriers. The immobilized yeast cells displayed much higher sucrose hydrolyzing activities (90–517 U/g) than the bacterial, Z. mobilis, cells (0.76–1.65 U/g). The yeast cells chelated on hydrous metal oxide derivative of pumice stone presented higher initial -d-fructofuranosidase (invertase, EC 3.2.1.26) activity (161–517 U/g) than on other derivatives (90–201 U/g). The introduction of an organic bridge between the cells and the metal activator led to a decrease of the initial activity of the immobilized cells, however S. cerevisiae cells immobilized on the carbonyl derivative of titanium (IV) activated pumice stone, by covalent linkage, displayed a very stable behaviour, which in continuous operation at 30° C show only a slightly decrease on invertase activity for a two month period (half-life=470 days). The continuous hydrolysis of a 2% w/v sucrose solution at 30° C in an immobilized S. cerevisiae packed bed reactor was described by a simple kinetic model developed by the authors (Cabral et al., 1984a), which can also be used to predict the enzyme activity of the immobilized cells from conversion degree data.  相似文献   

14.
A continuous fluidized bed reactor operation system has been developed for ethanol production by Zymomonas mobilis using hydrolysed B-starch without sterilization. The operation system consists of two phases. In the first phase macroporous glass carriers in a totally mixed fluidized bed reactor were filled up totally with a monoculture of Z. mobilis by fast computer-controlled colonization, so that in the subsequent production phase no contaminants, especially lactic-acid bacteria, could penetrate into the carrier beads. In the production phase the high concentration of immobilized Z. mobilis cells in the fluidized bed reactor permits unsterile fermentation of hydrolysed B-starch to ethanol at short residence times. This results in wash-out conditions for contaminants from the substrate. Long-term experimental studies (more than 120 days) of unsterile fermentation of hydrolysed B-starch in the laboratory fluidized bed reactor (2.2 l) demonstrated stable operation up to residence times of 5 h. A semi-technical fluidized bed reactor plant (cascade of two fluidized bed reactors, each 55 l) was operated stably at a mean residence time of 4.25 h. Glucose conversion of 99% of the unsterile hydrolysed B-starch was achieved at 120 g glucose/l–1 in the substrate, resulting in an ethanol concentration of 50 g·l–1 and an ethanol space-time yield of 13 g·l–1·h–1. This is a factor of three compared to ethanol fermentation of hydrolysed B-starch with Z. mobilis in a continuous stirred tank reactor, which can only be operated stably under sterile conditions. Correspondence to: D. Weuster-Botz  相似文献   

15.
Summary The potential of four sugar beet substrates from the sugar industry [syrup (S), crystallizer effluent 1 (CE1), crystallizer effluent 2 (CE2) and molasses (M)] were compared for ethanol production using an osmotolerant mutant strain of the bacterium Zymomonas mobilis. Sucrose of the substrates was enzymatically hydrolysed to avoid levan formation during fermentation. Nutrient supplementation experiments have shown that reproducible growth and ethanol production could be obtained on the four substrates supplemented only with magnesium sulphate (CE2 and M) or additionally with ammonium sulphate (S and CE1). Thus, addition of costly yeast extract could be avoided. All 20% (w/v) substrates showed nearly complete sugar conversion (>94.9%), good growth (0.16 h–1) and ethanol production (>40 g 1–1). However, sorbitol formation reduced the ethanol yield (73–79% of the theoretical value) significantly. Batch kinetic parameters and studies of instantaneous parameters showed that enhanced osmolality of substrates (SZ. mobilis with appropriate supplementation. Offprint requests to: J. Baratti  相似文献   

16.
Summary Starvation responses of a passively immobilizedZymomonas mobilis system have been studied. The system recovered its total activity after starvation for a two month period at 4°C and no differences were observed when fresh medium was added previously to reactor storage. When the starvation temperature was 25–28°C, complete glucose conversion was achieved even after 11 days without feeding, whereas the longer the starvation time the lower steady state glucose conversion achieved.  相似文献   

17.
Summary Cell recycle studies have been carried out with a strain of Zymomonas mobilis selected for its improved ethanol tolerance and faster rates of glucose uptake and ethanol production. As part of the investigation a capilliary cross-flow microfiltration unit with polyamide membranes has been evaluated in view of its potential advantages (low cost and ability to withstand repeated cleaning with caustic soda). The results demonstrate that ethanol concentrations of 60–65g/l can be sustained at productivities ranging from 120–200g/l/h.  相似文献   

18.
Summary Using strains of Z.mobilis, a vacuum fermentation system has been evaluated. The system was designed with the fermentor at atmospheric pressure and an external vacuum vessel (50 mm Hg). Sequential operation of the vacuum vessel was under microprocessor control. The use of Z.mobilis together with the two-stage design of the vacuum system has been found to overcome the problems of oxygen addition and the possibility of contamination reported previously for vacuum fermentations with yeasts. The productivity of 85 g/1/h found in the continuous cell recycle experiments was similar to that reported previously for a strain of S.cerevisiae.  相似文献   

19.
Extraction and quantitation of astaxanthin from Phaffia rhodozyma   总被引:32,自引:0,他引:32  
Summary The rapid, quantitative release of astaxanthin and other carotenoids from the yeast Phaffia rhodozyma is described. Hashed cells are ruptured with dimethylsulfoxide (DMSO) and carotenoids extracted into an organic solvent. Extraction and spectrophotometric quantitation of total carotenoids is rapid, reproducible and only small volumes (0.1–2 ml) of culture are required. HPLC analysis in normal phase silica gel column indicates that astaxanthin comprises 65–95% of the total pigmented carotenoids of P. rhodozyma.  相似文献   

20.
The intracellular sucrase SacA from Zymomonas mobilis was purified to homogeneity from a recombinant E. coli strain containing the SacA gene under an expression system. The protein was monomeric with a molecular mass of 58 kDa. The sucrase activity was maximal at 25 °C and thermal stability of the purified protein was low (50% recovery after 30 min at 46 °C ). The activation energy was low at 33 kJ mol–1. Maximum activity was at pH 6.5. Activity was strongly inhibited (>99%) by SH blocking reagents and reducing agents slightly (10–60%) increased the activity of purified SacA. The sucrase showed a low K M (42 mM) and k cat (125 s–1) which indicated its very low efficiency for sucrose hydrolysis. A mutant strain of Z. mobilis not able to grow on sucrose was isolated. This strain (ZM4S) lacked the two sucrases SacB and SacC but SacA was present in the intracellular fraction. Therefore, SacA alone is unable to allow growth Z. mobilis on sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号