首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Nuclear and polyadenylated RNA fractions of Raji cells are encoded by larger fractions of Epstein-Barr virus DNA (35 and 18%, respectively) than encode polyribosomal RNA (10%). Polyribosomal RNA is encoded by DNA mapping at 0.05 X 10(8) to 0.29 X 10(8), 0.63 X 10(8) to 0.66 X 10(8), and 1.10 X 10(8) to 0.03 X 10(8) daltons. An abundant, small (160-base), non-polyadenylated RNA encoded by EcoRI fragment J (0.05 X 10(8) to 0.07 X 10(8) daltons) is also present in the cytoplasm of Raji cells. After induction of early antigen in Raji cells, there was a substantial increase in the complexity of viral polyadenylated and polyribosomal RNAs. Thus, nuclear RNA was encoded by 40% of Epstein-Barr virus DNA, and polyadenylated and polyribosomal RNAs were encoded by at least 30% of Epstein-Barr virus DNA. Polyribosomal RNA from induced Raji cells was encoded by Epstein-Barr virus DNAs mapping at 0.05 X 10(8) to 0.29 X 10(8), 0.63 X 10(8) to 0.66 X 10(8), and 1.10 X 10(8) to 0.03 X 10(8) daltons and also by DNAs mapping within the long unique regions of Epstein-Barr virus DNA at 0.39 X 10(8) to 0.49 X 10(8), 0.51 X 10(8) to 0.59 X 10(8), 0.66 X 10(8) to 0.77 X 10(8), and 1.02 X 10(8) to 1.05 X 10(8) daltons.  相似文献   

2.
The complexity and abundance of Epstein-Barr (EBV)-specific RNA in cell cultures restringently, abortively, and productively infected with EBV has been analyed by hybridization of the infected cell RNA with purified viral DNA. The data indicate the following. (i) Cultures containing productively infected cells contain viral RNA encoded by at least 45% of EBV DNA, and almost all of the species of viral RNA are present in the polyadenylated and polyribosomal RNA fractions. (ii) Restringently infected Namalwa and Raji cultures, which contain only intranuclear antigen, EBNA, and enhanced capacity for growth in vitro, contain EBV RNA encoded by at least 16 and 30% of the EBV DNA, respectively. The polyadenylated and polyribosomal RNA fractions of Raji and Namalwa cells are enriched for a class of EBV RNA encoded by approximately 5% of EBV DNA. The same EBV DNA sequences encode the polyadenylated and polyribosomal RNA of both Raji and Namalwa cells. (iii) After superinfection of Raji cultures with EBV (HR-1), the abortively infected cells contain RNA encoded by at least 41% of EBV DNA. The polyadenylated RNA of superinfected Raji cells is enriched for a class of EBV RNA encoded by approximately 20% of EBV HR-1 DNA. Summation hybridization experiments suggest that the polyadenylated RNA in superinfected Raji cells is encoded by the same DNA sequences as encode RNA present in Raji cells before superinfection, most of which is not polyadenylated. That the same EBV RNA sequences are present in the polyadenylated and polyribosomal fractions of two independently derived, restringently infected cell lines suggests that these RNAs may specify functions related to maintenance of the transformed state. The complexity of this class of RNA is adequate to specify a sequence of a least 5,000 amino acids. That only some RNA species are polyadenylated in restringent and abortive infection suggests that polyadenylation or whatever determines polyadenylation may play a role in the restricted expression of the EVB genome.  相似文献   

3.
Namalwa and Raji cells, originally obtained from a Burkitt tumor biopsy, grow as continuous cell lines in vitro and contain the Epstein-Barr virus (EBV)-related nuclear antigen EBNA (B. M. Reedman and G. Klein, Int. J. Cancer 11:499-520, 1973) and RNA homologous to at least 17 and 30% of the EBV genome, respectively (S. D. Hayward and E. Kieff, J. Virol. 18:518-525, 1976; T. Orellana and E. Kieff, J. Virol. 22:321-330, 1977). The polyribosomal and polyadenylated [poly(A)+] RNA fractions of Namalwa and Raji cells are enriched for a class of viral RNA homologous to 5 to 7% of EBV DNA (Hayward and Kieff, J. Virol. 18:518-525, 1976; Orellana and Kieff, J. Virol. 22:321-330, 1977). The objective of the experiments described in this communication was to determine the location within the map of the EBV genome (D. Given and E. Kieff, J. Virol. 28:524-542, 1978) of the DNA which encodes the viral RNA in the poly(A)+ and non-polyadenylated [poly(A)-] RNA fractions of Namalwa cells. Hybridization of labeled DNA homologous to Namalwa poly(A)+ or poly(A)- RNA to blots containing EcoRI, Hsu I, or Hsu I/EcoRI double-cut fragments of EBV (B95-8) or (W91) DNA indicated that these RNAs are encoded by DNA contained primarily in the Hsu I A/EcoRI A and Hsu I B/EcoRI A fragments and, to a lesser extent, in other fragments of the EBV genome. Hybridizations of Namalwa poly(A)+ and poly(A)- RNA in solution to denatured labeled EcoRI A or B fragments, Hsu I A, B, or D fragments, and Hsu I A/EcoRI A or Bam I S fragments and of Raji polyribosomal poly(A)+ RNA to the EcoRI A fragment indicated that (i) Namalwa poly(A)+ RNA is encoded primarily by 6 x 10(5) daltons of a 2 x 10(6)-dalton segment of DNA, Bam I S, which is tandemly reiterated, approximately 10 times, in the Hsu I A/EcoRI A fragment and is encoded to a lesser extent by DNA in the Hsu I B, EcoRI B, and Hsu I D fragments. Raji polyribosomal poly(A)+ RNA is encoded by a similar fraction of the EcoRI A fragment as that which encodes Namalwa poly(A)+ RNA. (ii) The fraction of the Bam I S fragment homologous to Namalwa poly(A)- RNA is similar to the fraction homologous to Namalwa poly(A)+ RNA. However, Namalwa poly(A)- RNA is homologous to a larger fraction of the DNA in the Hsu I B, Hsu I D, and EcoRI B fragments.  相似文献   

4.
Epstein-Barr virus RNA in Burkitt tumor tissue.   总被引:17,自引:0,他引:17  
T Dambaugh  F K Nkrumah  R J Biggar  E Kieff 《Cell》1979,16(2):313-322
Analysis of the viral RNA in four Burkitt tumor biopsies indicates that tumor tissue contains RNA homologous to at least 3–6% of the DNA of Epstein-Barr virus (EBV). Most of these RNA species accumulate in the polyadenylated RNA fraction of Burkitt tumor tissue. Two approaches have been used to determine the location within the EBV genome of the DNA sequences which encode stable RNA in two Burkitt tumor biopsies, F and S, which contain 6–10 copies per cell of at least 80% of the EBV genome. With the first approach, 32P-EBV DNA homologous to polyadenylated or nonpolyadenylated RNAs from the F, S or R tumors was hybridized to blots of fragments of EBV DNA. With the second approach, polyadenylated or nonpolyadenylated RNAs from the F or S tumors were hybridized to separated, labeled fragments of EBV DNA in solution. The results indicate that first, most of the viral RNA in Burkitt tumor tissue is encoded by approximately 20% of the Hsu I D fragment, 20% of the Eco RI A/Hsu I A double-cut fragment and 3% of the Hsu I B fragment of EBV DNA; second, an abundant RNA species in tumor tissue is homologous to the “additional DNA” present in the W91 and Jijoye/HR-I Burkitt tumor isolates of EBV and absent in the B95-8 virus, an isolate of EBV from outside the Burkitt endemic region; and third, there is little or no homology to other regions of the EBV genome.  相似文献   

5.
6.
AT least four established human lymphocyte cell lines, one that originates from a Burkitt's lymphoma and the others from normal persons, contain Epstein-Barr virus (EBV) genome1. These cells show no viral antigens by immunofluorescence tests nor do they produce virus particles. We are examining one of the four cell lines, Raji (cells from a Burkitt's lymphoma), in more detail. The DNA isolated from purified Raji chromosomes contains as much virus genome as the DNA extracted from whole cells (65 genome equivalents per cell)1. The viral DNA therefore seems to be in the chromosomes. This result, however, does not necessarily indicate that the viral DNA is physically integrated into chromosomal DNA. The following experiments suggest that the EBV DNA in Raji cells is not covalently linked to the large chromosomal DNA, although the number of viral genomes per cell remains constant during passage. The results do not, however, exclude the possibility that small fragments of cell DNA are bonded to the viral DNA. The data also indicate that EBV DNA in Raji cells exists in strands of complete or nearly complete size.  相似文献   

7.
A non-integrated form of Epstein-Barr virus DNA was purified from the Burkitt lymphoma-derived human lymphoid cell line Raji by CsCl density gradient centrifugation and neutral glycerol gradient centrifugation. This intracellular form of the virus DNA sediments at a rate typical of a covalently closed circular DNA molecule of the size of the virus genome in both neutral and alkaline solution. Treatment with low doses of X-rays leads to a discontinuous conversion of the molecules to a form with the sedimentation properties of open circular DNA (a circular duplex molecule containing one or more single-strand breaks). The direct observation of large circular DNA molecules by electron microscopy further confirms the covalently closed circular duplex structure of part of the intracellular viral DNA. Such circular molecules were not detected in corresponding DNA fractions from Epstein-Barr virus-negative human lymphoid cell lines. In ethidium bromide/CsCl density gradient centrifugation experiments, the purified non-integrated virus DNA behaves as twisted, covalently closed DNA circles with the same initial superhelix density as polyoma virus DNA. The latter additional purification technique permits the isolation of intracellular Epstein-Barr virus DNA in > 90% pure form from non-producer cells. The molecular weight of the circular virus DNA from Raji cells, determined by contour length measurements, is the same within experimental error as that of the linear DNA from virus particles.  相似文献   

8.
The Epstein-Barr virus genome is present in more than 95% of the African cases of Burkitt lymphoma. In this tumor, the viral genome is usually maintained in multiple episomal copies. Viral integration has been described only for Namalwa, a cell line lacking episomes. In this study, we have addressed the question of whether integrated and episomal copies can coexist in Burkitt lymphoma cells. Gel electrophoresis was used to demonstrate the presence of episomal as well as free linear DNA in three Burkitt lymphoma cell lines. The numbers of episomal copies per cell were estimated to be 5 to 10 in BL36 and BL137 cells and below 1 in BL60 cells, indicating that BL60 does not represent a homogeneous cell population. Fluorescence in situ hybridization was combined with chromosomal banding to study the association of the viral DNA with metaphase chromosomes. A symmetrical pattern of signals at both chromatids located at the same chromosomal sites in many if not all metaphases was taken as evidence for viral integration. In each of the three cell lines, one site of integration was identified: at chromosome 11p15 in BL36 cells, at chromosome 1p34 in BL137 cells, and at the site of a reciprocal t(11;19) translocation in BL60 cells. Integrated, episomal and linear copies of Epstein-Barr virus DNA thus coexist in Burkitt lymphoma cells. The biological significance of viral integration in Burkitt lymphoma cells remains to be elucidated.  相似文献   

9.
Epstein-Barr virus with heterogeneous DNA disrupts latency.   总被引:43,自引:32,他引:11       下载免费PDF全文
G Miller  M Rabson    L Heston 《Journal of virology》1984,50(1):174-182
By cloning the HR-1 Burkitt lymphoma line, we previously uncovered two distinct biological variants of nontransforming Epstein-Barr virus (EBV). The most commonly cloned variant has a low rate of spontaneous viral synthesis and is unable to induce early antigen in Raji cells (EAI-). A rare variant spontaneously releases virus which is capable of inducing early antigen in Raji cells (EAI+). Since EAI- virus lacks heterogeneous DNA (het-) and EAI+ virus contains heterogeneous DNA (het+), we suggested that spontaneous viral synthesis and induction of early antigen are biological properties which correlate with the presence of het sequences. The present experiments provide three new lines of experimental evidence in favor of this hypothesis. (i) Revertant subclones of the EAI+ het+ variant which have lost the het DNA concomitantly lost EAI ability. Thus, het DNA is not stably associated with the cells as are the episomes. (ii) het DNA was acquired by two het- subclones of the HR-1 line after superinfection with EAI+ virus. After superinfection, these clones synthesized EAI+ het+ virus. Thus, het DNA may be maintained in the HR-1 line by cell-to-cell spread. (iii) Virus with het DNA activated full expression of endogenous latent EBV of the transforming phenotype in a line of immortalized neonatal lymphocytes designated X50-7. By use of restriction endonuclease polymorphisms unique to both the superinfecting and endogenous genomes, we show that the genome of the activated virus resembles that of the virus which was endogenous to X50-7 cells. This result suggests that het sequences result in transactivation of the latent EBV. het DNA had homology with EBV sequences which are not normally contiguous on the physical map of the genome. het DNA was always accompanied by the presence of DNA of nonheterogenous HR-1. Thus, het DNA is a form of "defective" EBV DNA. However, the biological effect of this defective DNA is to enhance rather than to interfere with EBV replication. This is a novel property of defective virus.  相似文献   

10.
11.
12.
A comparative analysis of three Epstein-Barr virus DNAs from American patients with infectious mononucleosis (B95-8, Cherry, and Lamont) and four Epstein-Barr virus DNAs from African patients with Burkitt lymphoma (AG876, W91, Raji, and P3HR-1) indicated that the usual format of Epstein-Barr virus DNA includes a variable number of direct repeats of a 0.35 X 10(6)-dalton sequence (TR) at both ends of the DNA, a 9 X 10(6)-dalton sequence of largely unique DNA (Us), a variable number of repeats of a 2 X 10(6)-dalton sequence (IR), and a 89 X 10(6)-dalton sequence of largely unique DNA (UL). Within UL there was homology between DNA at 26 X 10(6) to 28 X 10(6) daltons and DNA at 93 X 10(6) to 95 X 10(6) daltons. The relative sequence order (TR, US, IR, UL, TR) did not vary among "standard" Epstein-Barr virus DNA molecules of each isolate. B95-8 DNA had an unusual deletion extending from 91 X 10(6) to 100 X 10(6) daltons, and P3HR-1 DNA had an unusual deletion extending from 23.5 X 10(6) to 26 X 10(6) daltons. There was sufficient variability among the EcoRI and BamHI fragments of the DNAs to identify each isolate specifically. However, we discerned no distinguishing features for the two geographic or pathogenic origins of the seven isolates. Three intracellular DNAs (Raji, Lamont, and Cherry) and one virion DNA (P3HR-1) were heterogenous in molecular organization and had subpopulations of rearranged or defective molecules. Some regions, particularly 59 X 10(6) to 63 X 10(6) daltons and sequences around TR, frequently participated in rearrangements. Restriction endonuclease maps of the standard and rearranged DNAs of the seven isolates are presented.  相似文献   

13.
A complete collection of fragments of Epstein-Barr virus DNA, obtained by cleavage with restriction endonuclease Eco RI, has been cloned. Fourteen different internal fragments of the virus genome, derived from linear virion DNA of the B95-8 strain, and sequences corresponding to the terminal regions of virion DNA, derived from intracellular circular EBV DNA isolated from 895-8 cells, were cloned. Sizes of fragments were determined by agarose gel electrophoresis and their sum leads to an estimated molecular weight of 110 x 10(6) for virion DNA. Large Eco RI DNA fragments of special interest were also cloned in cosmids using another source of EBV DNA, that is, to circular viral DNA derived from Raji cells. In order to provide a set of overlapping sequences, all the 29 internal Bam HI fragments of B95-8 virion DNA were cloned in pBR322. The map location within the viral genome of each cloned DNA fragment was identified by hybridizing to blots of virion DNA cleaved with several different restriction endonucleases.  相似文献   

14.
Cellular DNA polymerases of a Burkitt lymphoma-derived cell line (P3HR-1) were found to be greatly induced by treatment of the cells with 5-iododeoxyuridine (IUdR) at a concentration which induces Epstein-Barr virus (EBV) early antigen (EA) expression. The activities of all the DNA Polymerases alpha, beta and gamma in P3HR-1 cells increased 7-9 fold by exposure of the cells to IUdR (25 micrograms/ml) for 3 days, while the EBV-coded DNA polymerase activity in the cell remained undetectable under the assay conditions employed. Under the same culture conditions with IUdR, EA-positive P3HR-1 cells increased to 16.6% which was much higher than that of the non-treated control cells (0.32%). On the other hand, another Burkitt lymphoma cell line, Raji, had very low incidence (1.27%) of EA induction by IUdR-treatment and the level of DNA polymerase activities remained almost unchanged. From these results it seems that the increase in DNA polymerase activity during the treatment of P3HR-1 cells with IUdR is closely related to high incidence of EA expression in these Burkitt lymphoma cells. Also, the finding has revealed yet unknown effect of IUdR on cultured cells and provides a useful tool to obtain a large quantity of the induced cellular DNA polymerases from the P3HR-1 and KB cells.  相似文献   

15.
Common multigenic activation in different human neoplasias.   总被引:1,自引:0,他引:1       下载免费PDF全文
N Hanania  D Shaool  J Harel  J Wiels    T Tursz 《The EMBO journal》1983,2(10):1621-1624
  相似文献   

16.
A Burkitt lymphoma cell line infected in vitro with a transformation-defective mutant recombinant Epstein-Barr virus (EBV) was used to attempt marker rescue of transformation competence by transfection with cloned wild-type DNA. EBV replication was induced in the transfected cells, and wild-type EBV DNA recombined via flanking homologous sequences adjacent to the deletion, resulting in a virus which transformed primary B lymphocytes in vitro. This strategy should be useful for molecular genetic analysis of the role of part or all of any gene in cell growth transformation.  相似文献   

17.
18.
Host Cell Regulation of Induction of Epstein-Barr Virus   总被引:18,自引:6,他引:12  
When Epstein-Barr virus (EBV) negative cells (Raji) were treated with iododeoxyuridine, only the early antigen (EA) component was induced. There was no significant increase in EBV DNA and no virus particles were observed. Somatic-cell hybrids were prepared from the fusion of Raji and D98 cells (D98/Raji). When these cells were treated with iododeoxyuridine, early antigen EBV DNA, and virus particles were synthesized. These data suggest cellular control over the expression of the EBV genome.  相似文献   

19.
We have analyzed the expression of the three major known growth transformation-associated Epstein-Barr virus (EBV) proteins, EBNA-1, EBNA-2, and latent membrane protein (LMP), in a series of somatic cell hybrids derived from the fusion of EBV-carrying Burkitt lymphoma (BL) lines with EBV-positive or EBV-negative B-cell lines. Independently of the cell phenotype, EBNA-1 was invariably coexpressed in all EBV-carrying hybrids. In hybrids between EBV-carrying, LMP-positive and LMP-negative Burkitt lymphoma lines, LMP was expressed, indicating positive control. Two EBV-negative lymphoma lines, Ramos and BJAB, differed in their ability to express LMP after B95-8 virus-induced conversion and after hybridization with Raji cells. BJAB was permissive while Ramos was nonpermissive for LMP, although both expressed EBNA-2. The EBNA-2-deleted P3HR-1 virus gave the same pattern of LMP expression in these two cells. Our findings indicate that the expression of EBNA-1, EBNA-2, and LMP is regulated by independent mechanisms.  相似文献   

20.
Cytoplasmic RNA prepared from several human cell lines and tissues was hybridised to DNA from Epstein-Barr virus, human adenovirus types 2, 3 and 12 and human papovaviruses BK and JC. RNA from all the cells, regardless of whether or not they were virally infected, hybridised to specific regions of the Epstein-Barr virus or adenovirus genomes but not to papovavirus DNA. The cellular cross-hybridising species appear to be repetitive sequences which are conserved in higher eukaryotes. Mismatch estimations indicate a high degree of homology between the viral and host sequences. Detailed analysis of selected regions of viral DNA failed to reveal any primary-structural peculiarities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号