共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously shown that nucleosomes are conformationally dynamic: DNA sequences that in the time-average are buried inside nucleosomes are nevertheless transiently accessible, even to large proteins (or any other macromolecule). We refer to this dynamic behavior as "site exposure". Here we show that: (i) the equilibrium constants describing this dynamic site exposure decrease progressively from either end of the nucleosomal DNA in toward the middle; and (ii) these position-dependent equilibrium constants are strongly dependent on the nucleosomal DNA sequence. The progressive decrease in equilibrium constant with distance inside the nucleosome supports the hypothesis that access to sites internal to a nucleosome is provided by progressive (transient) release of DNA from the octamer surface, starting from one end of the nucleosomal DNA. The dependence on genomic DNA sequence implies that a specific genomic DNA sequence could be a major determinant of target site occupancies achieved by regulatory proteins in vivo, by either governing the time-averaged accessibility for a given nucleosome position, or biasing the time-averaged positioning (of mobile nucleosomes), which in turn is a major determinant of site accessibility. 相似文献
2.
3.
DNA wrapped in nucleosomes is sterically occluded, creating obstacles for proteins that must bind it. How proteins gain access to DNA buried inside nucleosomes is not known. Here we report measurements of the rates of spontaneous nucleosome conformational changes in which a stretch of DNA transiently unwraps off the histone surface, starting from one end of the nucleosome, and then rewraps. The rates are rapid. Nucleosomal DNA remains fully wrapped for only approximately 250 ms before spontaneously unwrapping; unwrapped DNA rewraps within approximately 10-50 ms. Spontaneous unwrapping of nucleosomal DNA allows any protein rapid access even to buried stretches of the DNA. Our results explain how remodeling factors can be recruited to particular nucleosomes on a biologically relevant timescale, and they imply that the major impediment to entry of RNA polymerase into a nucleosome is rewrapping of nucleosomal DNA, not unwrapping. 相似文献
4.
The N and C-terminal tail domains of the core histones play important roles in gene regulation, but the mechanisms through which they act are not known. These tail domains are highly positively charged and are the sites of numerous post-translational modifications, including many sites for lysine acetylation. Nucleosomes in which these tail domains have been removed by trypsin remain otherwise intact, and are used by many laboratories as a model system for highly acetylated nucleosomes. Here, we test the hypothesis that one role of the tail domains is to directly regulate the accessibility of nucleosomal DNA to other DNA-binding proteins. Three assays are used: equilibrium binding by a site-specific, DNA-binding protein, and dynamic accessibility to restriction enzymes or to a non-specific exonuclease. The effects of removal of the tail domains as monitored by each of these assays can be understood within the framework of the site exposure model for the dynamic equilibrium accessibility of target sites located within the nucleosomal DNA. Removal of the tail domains leads to a 1.5 to 14-fold increase in position-dependent equilibrium constants for site exposure. The smallness of the effect weighs against models for gene activation in which histone acetylation is a mandatory initial event, required to facilitate subsequent access of regulatory proteins to nucleosomal DNA target sites. Alternative roles for histone acetylation in gene regulation are discussed. 相似文献
5.
Jordanka Zlatanova Corrine Seebart Miroslav Tomschik 《Trends in biochemical sciences》2008,33(6):247-253
Numerous studies have recently addressed the accessibility of nucleosomal DNA to protein factors. Two popular concepts - the histone code and chromatin remodeling - consider the nucleosome as a passive entity that 'waits' to be marked by histone modifications and is 'mobilized' by ATP-dependent remodelers. Here, we propose a holistic view of the nucleosome as an active, dynamic entity, the accessibility of which is controlled by binding of different linker proteins to the DNA entry/exit site. The linker proteins might directly compete for this binding site; alternatively, protein chaperones and/or chromatin remodelers might exchange one linker protein for another. Finally, according to our proposed model, the exchange factors are themselves controlled by post-translational modifications or binding of protein partners, to respond to the ever-changing intra- and extra-cellular environment. 相似文献
6.
Paola Gavazzo Laura Vergani Gian Carlo Mascetti Claudio Nicolini 《Journal of cellular biochemistry》1997,64(3):466-475
The effect of histone acetylation was monitored on CHO chromatin structure, following the addition of 7 mM Na-butyrate to the cell culture medium. The properties of both control and hyperacetylated chromatins and nuclei were investigated by circular dichroism, ethidium bromide intercalation, differential scanning calorimetry, and affinity chromatography. Our results are compatible with modest but significant alterations in the various levels of chromatin organization, as a result of the charge neutralization of some lysine residues within the N-terminal region of the histonic octamer. Namely, large statistically significant differences do exist in the heat capacity thermograms of native nuclei, where unfolding into single nucleofilament of the highly packed native chromatin superfiber appears associated with acetylation; at the same time CD, EB, and affinity chromatography point to modest but consistent differences in the compactness of isolated nucleosomes and polynucleosomes. J. Cell. Biochem. 64:466–475. © 1997 Wiley-Liss, Inc. 相似文献
7.
Packaging DNA in nucleosomes and higher-order chromatin structures restricts its accessibility and constitutes a barrier for all DNA transactions including gene regulation and DNA repair. How and how fast proteins find access to DNA buried in chromatin of living cells is poorly understood. To address this question in a real time in vivo approach, we investigated DNA repair by photolyase in yeast. We show that overexpressed photolyase, a light-dependent DNA-repair enzyme, recognizes and repairs UV-damaged DNA within seconds. Rapid repair was observed in various nucleosomal regions of the genome including inactive and active genes and repressed promoters. About 50% of cyclobutane pyrimidine dimers were removed in 5 s, >80% in 90 s. Heterochromatin was repaired within minutes, centromeres were not repaired. Consistent with fast conformational transitions of nucleosomes observed in vitro, this rapid repair strongly suggests that spontaneous unwrapping of nucleosomes rather than histone dissociation or chromatin remodeling provides DNA access. The data impact our view on the repressive and dynamic nature of chromatin and illustrate how proteins like photolyase can access DNA in structurally and functionally diverse chromatin regions. 相似文献
8.
9.
A single histone acetyltransferase from Tetrahymena macronuclei catalyzes deposition-related acetylation of free histones and transcription-related acetylation of nucleosomal histones 总被引:3,自引:2,他引:3
下载免费PDF全文

L G Chicoine R Richman R G Cook M A Gorovsky C D Allis 《The Journal of cell biology》1987,105(1):127-135
10.
11.
Some of the earliest studies of retroviral integration targeting reported that sites of gammaretroviral DNA integration were positively correlated with DNase I-hypersensitive sites in chromatin. This led to the suggestion that open chromatin was favorable for integration. More recent deep sequencing experiments confirmed that gammaretroviral integration sites and DNase I cleavage sites are associated in genome-wide surveys. Paradoxically, in vitro studies of integration show that nucleosomal DNA is actually favored over naked DNA, raising the question of whether integration target DNA in chromosomes is wrapped in nucleosomes or nucleosome free. In this study we examined gammaretroviral integration by infecting primary human CD4(+) T lymphocytes with a murine leukemia virus (MLV)-based retroviral vector or xenotropic murine leukemia virus-related virus (XMRV), and isolated 32,585 unique integration sites using ligation-mediated PCR and 454 pyrosequencing. CD4(+) T lymphocytes were chosen for study because of the particularly dense genome-wide mapping of chromatin features available for comparison. Analysis relative to predicted nucleosome positions showed that gammaretroviruses direct integration into outward-facing major grooves on nucleosome-wrapped DNA, similar to the integration pattern of HIV. Also, a suite of histone modifications correlated with gene activity are positively associated with integration by both MLV and XMRV. Thus, we conclude that favored integration near DNase I-hypersensitive sites does not imply that integration takes place exclusively in nucleosome-free regions. 相似文献
12.
13.
14.
15.
16.
17.
18.
DEAE-Sepharose chromatography of extracts from plasmodia of the myxomycete Physarum polycephalum revealed the presence of multiple histone acetyltransferases and histone deacetylases. A cytoplasmic histone acetyltransferase B, specific for histone H4, and two nuclear acetyltransferases A1 and A2 were identified; A1 acetylates all core histones with a preference for H3 and H2A, whereas A2 is specific for H3 and also slightly for H2B. Two histone deacetylases, HD1 and HD2, could be discriminated. They differ with respect to substrate specificity and pH dependence. For the first time the substrate specificity of histone deacetylases was determined using HPLC-purified individual core histone species. The order of acetylated substrate preference is H2A much greater than H3 greater than or equal to H4 greater than H2B for HD1 and H3 greater than H2A greater than H4 for HD2, respectively; HD2 is inactive with H2B as substrate. Moreover histone deacetylases are very sensitive to butyrate, since 2 mM butyrate leads to more than 50% inhibition of enzyme activity. 相似文献
19.
Nucleosomes are the fundamental packing units of the eukaryotic genome. A nucleosome core particle comprises an octameric histone core wrapped around by ~147bp DNA. Histones and DNA are targets for covalent modifications mediated by various chromatin modification enzymes. These modifications play crucial roles in various gene regulation activities. A group of common hypotheses for the mechanisms of gene regulation involves changes in the structure and structural dynamics of chromatin induced by chromatin modifications. We employed single molecule fluorescence methods to test these hypotheses by monitoring the structure and structural dynamics of nucleosomes before and after histone acetylation and DNA methylation, two of the best-conserved chromatin modifications throughout eukaryotes. Our studies revealed that these modifications induce changes in the structure and structural dynamics of nucleosomes that may contribute directly to the formation of open or repressive chromatin conformation. 相似文献
20.