首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid residues arginine (R) and lysine (K) have similar physicochemical characteristics and are often mutually substituted during evolution without affecting protein function. Statistical examinations on human proteins show that more R than K residues are used in the proximity of R residues, whereas more K than R are used near K residues. This biased use occurs on both a global and a local scale (shorter than ∼100 residues). Even within a given exon, G + C-rich and A + T-rich short DNA segments preferentially encode R and K, respectively. The biased use of R and K on a local scale is also seen in Saccharomyces cerevisiae and Caenorhabdidtis elegans, which lack global-scale mosaic structures with varying GC%, or isochores. Besides R and K, several amino acids are also used with a positive or negative correlation with the local GC% of third codon bases. The local-, or ``within-gene'-, scale heterogeneity of the DNA sequence may influence the sequence of the encoded protein segment. Received: 2 March 1998 / Accepted: 23 April 1998  相似文献   

2.
The nature of transepithelial and cellular transport of the dibasic amino acid lysine in human intestinal epithelial Caco-2 cells has been characterized. Intracellular accumulation of lysine across both the apical and basolateral membranes consists of a Na+-independent, membrane potential-sensitive uptake. Na+-independent lysine uptake at the basolateral membrane exceeds that at the apical membrane. Lysine uptake consists of both saturable and nonsaturable components. Na+-independent lysine uptake at both membranes is inhibited by lysine, arginine, alanine, histidine, methionine, leucine, cystine, cysteine and homoserine. In contrast, proline and taurine are without inhibitory effects at both membranes. Fractional Na+-independent lysine efflux from preloaded epithelial layers is greater at the basolateral membrane and shows trans-stimulation across both epithelial borders by lysine, arginine, alanine, histidine, methionine, and leucine but not proline and taurine. Na+-independent lysine influx (10 μm) in the presence of 10 mm homoserine shows further concentration dependent inhibition by lysine. Taken together, these data are consistent with lysine transport being mediated by systems bo,+, y+ and a component of very low affinity (nonsaturable) at both membranes. The relative contribution to lysine uptake at each membrane surface (at 10 μm lysine), normalized to total apical uptake (100%), is apical bo,+ (47%), y+ (27%) and the nonsaturable component (26%), and basal bo,+ (446%), y+ (276%) and the nonsaturable component (20%). Northern analysis shows hybridization of Caco-2 poly(A)+RNA with a human rBAT cDNA probe. Received: 3 July 1995/Revised: 6 February 1996  相似文献   

3.
Carrying out simultaneous tree-building and alignment of sequence data is a difficult computational task, and the methods currently available are either limited to a few sequences or restricted to highly simplified models of alignment and phylogeny. A method is given here for overcoming these limitations by Bayesian sampling of trees and alignments simultaneously. The method uses a standard substitution matrix model for residues together with a hidden Markov model structure that allows affine gap penalties. It escapes the heavy computational burdens of other models by using an approximation called the ``*' rule, which replaces missing data by a sum over all possible values of variables. The behavior of the model is demonstrated on test sets of globins. Received: 25 May 1998 / Accepted: 8 December 1998  相似文献   

4.
We have previously demonstrated (Diabetes 39:707–711, 1990) that in vitro glycation of the red cell Ca2+ pump diminishes the Ca2+-ATPase activity of the enzyme up to 50%. Such effect is due to the reaction of glucose with lysine residues of the Ca2+ pump (Biochem. J. 293:369–375, 1993). The aim of this work was to determine whether the effect of glucose is due to a full inactivation of a fraction of the total population of Ca2+ pump, or to a partial inactivation of all the molecules. Glycation decreased the V max for the ATPase activity leaving unaffected the apparent affinities for Ca2+, calmodulin or ATP. The apparent turnover was identical in both, the glycated and the native enzyme. Glycation decreased the V max for the ATP-dependent but not for the calmodulin-activated phosphatase activities. Concomitantly with the inhibition, up to 6.5% of the lysine residues were randomly glycated. The probabilistic analysis of the relation between the enzyme activity and the fraction of nonmodified residues indicates that only one Lys residue is responsible for the inhibition. We suggest that glucose decreases the Ca2+-ATPase activity by reacting with one essential Lys residue probably located in the vicinity of the catalytic site, which results in the full inactivation of the enzyme. Thus, Ca2+-ATPase activity measured in erythrocyte membranes or purified enzyme preparations preincubated with glucose depends on the remaining enzyme molecules in which the essential Lys residue stays unglycated. Received: 9 March 1999/Revised: 11 May 1999  相似文献   

5.
Charged amino acids are mostly exposed on a protein surface, thereby forming a network of interactions with the surrounding amino acids as well as with water. In particular, positively charged arginine and lysine have different side chain geometries and provide a different number of potential electrostatic interactions. This study reports a comparative analysis of the difference in the number of two representative electrostatic interactions, such as salt-bridges and hydrogen bonds, contributed by surface arginine and lysine, as well as their effect on protein stability using molecular modeling and dynamics simulation techniques. Two in silico variants, the R variant with all arginines and the K variant with all lysines on the protein surface, were modeled by mutating all the surface lysines to arginines and the surface arginines to lysines, respectively, for each of the 10 model proteins. A structural comparison of the respective two variants showed that the majority of R variants possessed more salt-bridges and hydrogen bond interactions than the K variants, indicating that arginine provides a higher probability of electrostatic interactions than lysine owing to its side chain geometry. Molecular dynamics simulations of these variants revealed the R variants to be more stable than the K variants at room temperature but this effect was not prominent under protein denaturating conditions, such as 353 and 333 K with 8 M urea. These results suggest that the arginine residues on a protein surface contribute to the protein stability slightly more than lysine by enhancing the electrostatic interactions.  相似文献   

6.
The rat renal Na/P i cotransporter type IIa (rat NaPi IIa) is a 637 amino acid protein containing 12 cysteine residues. We examined the effect of different cysteine modifying methanethiosulfonate (MTS)-reagents and the disulfide bond reducing agent tris(2-carboxyethyl)phosphine (TCEP) on the transport activity of wild-type and 12 single cysteine substitution mutants of rat NaPi IIa expressed in Xenopus laevis oocytes. The transport activity of the wild-type protein was resistant to three membrane impermeant MTS-reagents (MTSEA, MTSET and MTSES). In contrast, membrane permeant methyl methanethiosulfonate (MMTS) and TCEP inhibited the transport activity of both the wild-type, as well as all the single mutant proteins. This indicated the existence of more than one functionally important cysteine residue, not accessible extracellularly, and at least 2 disulfide bridges. To identify the disulfide bridges, three double mutants lacking 2 of the 3 cysteine residues predicted to be extracellular in different combinations were examined. This led to the identification of one disulfide bridge between C306 and C334; reconsideration of the topological model predictions suggested a second disulfide bridge between C225 and C520. Evaluation of a fourth double mutant indicated that at least one of two disulfide bridges (C306 and C334; C225 and C520) has to be formed to allow the surface expression of a functional cotransporter. A revised secondary structure is proposed which includes two partially repeated motifs that are connected by disulfide bridges formed between cysteine pairs C306-C334 and C225-C520. Received: 13 December 1999/Revised: 31 March 2000  相似文献   

7.
The amino acid sequences of 22 α-amylases from family 13 of glycosyl hydrolases were analyzed with the aim of revealing the evolutionary relationships between the archaeal α-amylases and their eubacterial and eukaryotic counterparts. Two evolutionary distance trees were constructed: (i) the first one based on the alignment of extracted best-conserved sequence regions (58 residues) comprising β2, β3, β4, β5, β7, and β8 strand segments of the catalytic (α/β)8-barrel and a short conserved stretch in domain B protruding out of the barrel in the β3 →α3 loop, and (ii) the second one based on the alignment of the substantial continuous part of the (α/β)8-barrel involving the entire domain B (consensus length: 386 residues). With regard to archaeal α-amylases, both trees compared brought, in fact, the same results; i.e., all family 13 α-amylases from domain Archaea were clustered with barley pI isozymes, which represent all plant α-amylases. The enzymes from Bacillus licheniformis and Escherichia coli, representing liquefying and cytoplasmic α-amylases, respectively, seem to be the further closest relatives to archaeal α-amylases. This evolutionary relatedness clearly reflects the discussed similarities in the amino acid sequences of these α-amylases, especially in the best-conserved sequence regions. Since the results for α-amylases belonging to all three domains (Eucarya, Eubacteria, Archaea) offered by both evolutionary trees are very similar, it is proposed that the investigated conserved sequence regions may indeed constitute the ``sequence fingerprints' of a given α-amylase. Received: 3 June 1998 / Accepted: 20 August 1998  相似文献   

8.
The heat shock protein 70 kDa sequences (HSP70) are of great importance as molecular chaperones in protein folding and transport. They are abundant under conditions of cellular stress. They are highly conserved in all domains of life: Archaea, eubacteria, eukaryotes, and organelles (mitochondria, chloroplasts). A multiple alignment of a large collection of these sequences was obtained employing our symmetric-iterative ITERALIGN program (Brocchieri and Karlin 1998). Assessments of conservation are interpreted in evolutionary terms and with respect to functional implications. Many archaeal sequences (methanogens and halophiles) tend to align best with the Gram-positive sequences. These two groups also miss a signature segment [about 25 amino acids (aa) long] present in all other HSP70 species (Gupta and Golding 1993). We observed a second signature sequence of about 4 aa absent from all eukaryotic homologues, significantly aligned in all prokaryotic sequences. Consensus sequences were developed for eight groups [Archaea, Gram-positive, proteobacterial Gram-negative, singular bacteria, mitochondria, plastids, eukaryotic endoplasmic reticulum (ER) isoforms, eukaryotic cytoplasmic isoforms]. All group consensus comparisons tend to summarize better the alignments than do the individual sequence comparisons. The global individual consensus ``matches' 87% with the consensus of consensuses sequence. A functional analysis of the global consensus identifies a (new) highly significant mixed charge cluster proximal to the carboxyl terminus of the sequence highlighting the hypercharge run EEDKKRRER (one-letter aa code used). The individual Archaea and Gram-positive sequences contain a corresponding significant mixed charge cluster in the location of the charge cluster of the consensus sequence. In contrast, the four Gram-negative proteobacterial sequences of the alignment do not have a charge cluster (even at the 5% significance level). All eukaryotic HSP70 sequences have the analogous charge cluster. Strikingly, several of the eukaryotic isoforms show multiple mixed charged clusters. These clusters were interpreted with supporting data related to HSP70 activity in facilitating chaperone, transport, and secretion function. We observed that the consensus contains only a single tryptophan residue and a single conserved cysteine. This is interpreted with respect to the target rule for disaggregating misfolded proteins. The mitochondrial HSP70 connections to bacterial HSP70 are analyzed, suggesting a polyphyletic split of Trypanosoma and Leishmania protist mitochondrial (Mt) homologues separated from Mt-animal/fungal/plant homologues. Moreover, the HSP70 sequences from the amitochondrial Entamoeba histolytica and Trichomonas vaginalis species were analyzed. The E. histolytica HSP70 is most similar to the higher eukaryotic cytoplasmic sequences, with significantly weaker alignments to ER sequences and much diminished matching to all eubacterial, mitochondrial, and chloroplast sequences. This appears to be at variance with the hypothesis that E. histolytica rather recently lost its mitochondrial organelle. T. vaginalis contains two HSP70 sequences, one Mt-like and the second similar to eukaryotic cytoplasmic sequences suggesting two diverse origins. Received: 29 January 1998 / Accepted: 14 May 1998  相似文献   

9.
Six fully conserved arginine residues (R129, R131, R235, R291, R319, and R340) closely grouped in the nucleotide binding site of rabbit muscle creatine kinase (rmCK) were mutated; four to alanine and all six to lysine. Kinetic analyses in the direction of phosphocreatine formation showed that all four alanine mutants led to substantial losses of activity with three (R129A, R131A, and R235A) having no detectable activity. All six lysine mutants retained variable degrees of reduced enzymatic activity. Static quenching of intrinsic tryptophan fluorescence was used to measure the binding constants for MgADP and MgATP. Nucleotide binding was at most only modestly affected by mutation of the arginine residues. Thus, the cluster of arginines seem to be primarily responsible for transition state stabilization which is further supported by the observation that none of the inactive mutants demonstrated the ability to form a transition analogue complex of MgADP.nitrate.creatine as determined by fluorescence quenching assays. As a whole, the results suggest that the most important role these residues play is to properly align the substrates for stabilization of the phosphoryl transfer reaction.  相似文献   

10.
The members of the PKA regulatory subunit family (PKA-R family) were analyzed by multiple sequence alignment and clustering based on phylogenetic tree construction. According to the phylogenetic trees generated from multiple sequence alignment of the complete sequences, the PKA-R family was divided into four subfamilies (types I to IV). Members of each subfamily were exclusively from animals (types I and II), fungi (type III), and alveolates (type IV). Application of the same methodology to the cAMP-binding domains, and subsequently to the region delimited by β-strands 6 and 7 of the crystal structures of bovine RIα and rat RIIβ (the phosphate-binding cassette; PBC), proved that this highly conserved region was enough to classify unequivocally the members of the PKA-R family. A single signature sequence, F–G–E–[LIV]–A–L–[LIMV]–x(3)–[PV]–R–[ANQV]–A, corresponding to the PBC was identified which is characteristic of the PKA-R family and is sufficient to distinguish it from other members of the cyclic nucleotide-binding protein superfamily. Specific determinants for the A and B domains of each R-subunit type were also identified. Conserved residues defining the signature motif are important for interaction with cAMP or for positioning the residues that directly interact with cAMP. Conversely, residues that define subfamilies or domain types are not conserved and are mostly located on the loop that connects α-helix B′ and β strand 7. Received: 2 November 2000/Accepted: 14 June 2001  相似文献   

11.
The gamma-aminobutyric acid (GABA) binding pocket within the GABA(A) receptor complex has been suggested to contain arginine residues. The aim of this study was to test this hypothesis by mutating arginine residues potentially contributing to the formation of a GABA binding pocket. Thus, six arginines conserved in human GABA(A) receptor alpha subunits (arginine 34, 70, 77, 123, 135, and 224) as well as two nonconserved arginines (79 and 190), all located in the extracellular N-terminal segment of the alpha(5) subunit, were substituted by lysines. The individual alpha(5) subunit mutants were coexpressed with human beta(2) and gamma(2s) GABA(A) receptor subunits in Chinese hamster ovary cells by transient transfection. Electrophysiological whole-cell patch-clamp recordings show that, of the eight arginine residues tested, the two arginines at positions 70 and 123 appear to be essential for the GABA-gated chloride current because the EC(50) values of the two mutant constructs increase >100-fold compared with the wild-type alpha(5),beta(2), gamma(2s) GABA(A) receptor. However, diazepam and allopregnanolone modulation and pentobarbital stimulation properties are unaffected by the introduction of lysines at positions 70 and 123. A double mutant carrying lysine substitutions at positions 70 and 123 is virtually insensitive to GABA, suggesting alterations of one or more GABA binding sites.  相似文献   

12.
Site-directed mutagenesis is a powerful tool for identifying active-site residues essential for catalysis; however, this approach has only recently become available for acetate kinase. The enzyme from Methanosarcina thermophila has been cloned and hyper-produced in a highly active form in Escherichia coli (recombinant wild-type). The role of arginines in this acetate kinase was investigated. Five arginines (R91, R175, R241, R285, and R340) in the M. thermophila enzyme were selected for individual replacement based on their high conservation among sequences of acetate kinase homologues. Replacement of R91 or R241 with alanine or leucine produced variants with specific activities less than 0.1% of the recombinant wild-type enzyme. The circular dichroism spectra and other properties of these variants were comparable to those of recombinant wild-type, indicating no global conformational changes. These results indicate that R91 and R241 are essential for activity, consistent with roles in catalysis. The variant produced by conservative replacement of R91 with lysine had approximately 2% of recombinant wild-type activity, suggesting a positive charge is important in this position. The K(m) value for acetate of the R91K variant increased greater than 10-fold relative to recombinant wild-type, suggesting an additional role for R91 in binding this substrate. Activities of both the R91A and R241A variants were rescued 20-fold when guanidine or derivatives were added to the reaction mixture. The K(m) values for ATP of the rescued variants were similar to those of recombinant wild-type, suggesting that the rescued activities are the consequence of replacement of important functional groups and not changes in the catalytic mechanism. These results further support roles for R91 and R241 in catalysis. Replacement of R285 with alanine, leucine, or lysine had no significant effect on activity; however, the K(m) values for acetate increased 6-10-fold, suggesting R285 influences the binding of this substrate. Phenylglyoxal inhibition and substrate protection experiments with the recombinant wild-type enzyme and variants were consistent with the presence of one or more essential arginine residues in the active site as well as with roles for R91 and R241 in catalysis. It is proposed that R91 and R241 function to stabilize the previously proposed pentacoordinate transition state during direct in-line transfer of the gamma-phosphate of ATP to acetate. The kinetic characterization of variants produced by replacement of R175 and R340 with alanine, leucine, or lysine indicated that these residues are not involved in catalysis but fulfill important structural roles.  相似文献   

13.
The Na+-Ca2+ exchanger plays an important role in cardiac contractility by moving Ca2+ across the plasma membrane during excitation-contraction coupling. A 20 amino acid peptide, XIP, synthesized to mimic a region of the exchanger, inhibits exchange activity. We identify here amino acid residues important for inhibitory function. Effects of modified peptides on Na+-Ca2+ exchange activity were determined. Exchange activity was assessed as 45Ca2+ uptake into Na+-loaded cardiac sarcolemmal vesicles. We find that the entire length of XIP is important for maximal potency, though the major inhibitory components are between residues 5 and 16. Basic and aromatic residues are most important for the inhibitory function of XIP. Substitutions of arginine 12 and arginine 14 with alanine or glutamine dramatically decrease the potency of XIP, suggesting that these residues play a key role in possible charge-charge interactions. Substitutions of other basic residues with alanines or glutamines had less effect on the potency of XIP. All aromatic residues participate in binding with the exchanger, probably via hydrophobic interactions as indicated by tryptophan fluorescence. A tyrosine is required at position 6 for maximal inhibition and phenylalanine 5 and tyrosine 8 can only be replaced by other aromatic residues. Tyrosine 10 and tyrosine 13 can be replaced with other bulky residues. A specific conformation of XIP, with structural constrains provided by all parts of the molecule, is required for optimal inhibitory function. Received: 19 September 1996/Revised: 20 November 1996  相似文献   

14.
The effects of nitric oxide (NO) and other cysteine modifying agents were examined on cyclic nucleotide-gated (CNG) cation channels from rat olfactory receptor neurons. The NO compounds, S-nitroso-cysteine (SNC) and 3-morpholino-sydnonomine (SIN-1), did not activate the channels when applied for up to 10 min. The cysteine alkylating agent, N-ethylmaleimide (NEM), and the oxidising agent, dithionitrobensoate (DTNB), were also without agonist efficacy. Neither SNC nor DTNB altered the cAMP sensitivity of the channels. However, 2-min applications of SIN-1, SNC and DTNB inhibited the cAMP-gated current to approximately 50% of the control current level. This inhibition showed no spontaneous reversal for 5 min but was completely reversed by a 2-min exposure to DTT. The presence of cAMP protected the channels against NO-induced inhibition. These results indicate that inhibition is caused by S-nitrosylation of neighboring sulfhydryl groups leading to sulfhydryl bond formation. This reaction is favored in the closed channel state. Since recombinantly expressed rat olfactory α and β CNG channel homomers and α/β heteromers are activated and not inhibited by cysteine modification, the results of this study imply the existence of a novel subunit or tightly bound factor which dominates the effect of cysteine modification in the native channels. As CNG channels provide a pathway for calcum influx, the results may also have important implications for the physiological role of NO in mammalian olfactory receptor neurons. Received: 30 March 1998/Revised: 17 June 1998  相似文献   

15.
The melibiose carrier from Escherichia coli is a sugar-cation cotransport system. Previously evidence was obtained that this integral membrane protein consists of 12 transmembrane helices. Starting with the cysteine-less melibiose carrier, cysteine has been substituted individually for amino acids 374–396, which includes all of the residues in the proposed helix XI. The carriers with cysteine substitutions were studied for their transport activity and the effect of the water soluble sulfhydryl reagent p-chloromercuribenzenesulfonic acid (PCMBS). Studies were carried out on both intact cells and inside out vesicles. Cysteine substitution caused loss of transport activity in seven of the mutants (K377C, G379C, A383C, F385C, L391C, G395C and Y396C). PCMBS produced more than 50% inhibition in six of the mutants (S380C, A381C, A384C, F387C, A388C and L391C). Preincubation of the cells with melibiose protected five of these residues from the inhibitory action of PCMBS. It was concluded that the residues whose cysteine derivatives were inhibited by PCMBS probably faced the aqueous channel. Received: 30 September 1999/Revised: 22 November 1999  相似文献   

16.
In contrast to most other serine proteases, tissue-type plasminogen activator (t-PA) possesses enzymatic activity as the one-chain zymogen form. The hypothesis that lysine residues 277 or 416 may be involved in stabilization of an active conformation of one-chain t-PA via salt-bridge formation with aspartic acid residue 477 was tested by site-directed mutagenesis. Four recombinant t-PA mutants were constructed. The amidolytic activities of these analogues were compared to that of authentic t-PA. Substitution of arginine-275 provided an analogue [( R275G]t-PA) resistant to plasmin cleavage. The amidolytic activity of [R275G]t-PA was comparable to that of authentic one-chain t-PA, and so was the activity of [R275L,K277L]t-PA, in which additional substitution of lysine residue 277 was carried out. This suggested that its presence was nonessential for obtaining one-chain t-PA activity. In contrast, substitution of lysine residue 416 to obtain [K416S]t-PA and [K416S,H417T]t-PA resulted in substantial quenching of amidolytic one-chain activity. As expected, the amidolytic activities of the two-chain forms were less affected by the substitution. Involvement of lysine residue 416 in one-chain t-PA activity was also indicated by decreased activities of [K416S]t-PA and [K416S,H417T]t-PA with plasminogen as the substrate. The one-chain activity of the lysine residue 416 substitution analogues was partially restored in the presence of fibrin. This could indicate that strong ligands such as fibrin might provide an alternative stabilization of the active conformation of one-chain t-PA.  相似文献   

17.
18.
Fungi have evolved a unique α-aminoadipate pathway for lysine biosynthesis. The fungal-specific enzyme homoaconitate hydratase from this pathway is moderately similar to the aconitase-family proteins from a diverse array of taxonomic groups, which have varying modes of obtaining lysine. We have used the similarity of homoaconitate hydratase to isopropylmalate isomerase (serving in leucine biosynthesis), aconitase (from the tricarboxylic acid cycle), and iron-responsive element binding proteins (cytosolic aconitase) from fungi and other eukaryotes, eubacteria, and archaea to evaluate possible evolutionary scenarios for the origin of this pathway. Refined sequence alignments show that aconitase active site residues are highly conserved in each of the enzymes, and intervening sequence sites are quite dissimilar. This pattern suggests strong purifying selection has acted to preserve the aconitase active site residues for a common catalytic mechanism; numerous other substitutions occur due to adaptive evolution or simply lack of functional constraint. We hypothesize that the similarities are the remnants of an ancestral gene duplication, which may not have occurred within the fungal lineage. Maximum likelihood, neighbor joining, and maximum parsimony phylogenetic comparisons show that the α-aminoadipate pathway enzyme is an outgroup to all aconitase family proteins for which sequence is currently available. Received: 7 October 1997  相似文献   

19.
The calcium pump of plasma membranes catalyzes the hydrolysis of ATP and phosphoric esters like p-nitrophenyl phosphate (pNPP). The latter activity requires the presence of ATP and/or calmodulin, and Ca2+ [22, 25]. We have studied the effects of nucleotide-analogues and chemical modifications of nucleotide binding sites on Ca2+-pNPPase activity. Treatment with fluorescein isothiocyanate (FITC), abolished Ca2+-ATPase and ATP-dependent pNPPase, but affected only 45% of the calmodulin-dependent pNPPase activity. The nucleotide analogue eosin-Y had an inhibitory effect on calmodulin-dependent pNPPase (Ki eosin-Y= 2 μm). FITC treatment increased Ki eosin-Y 15 times. Acetylation of lysine residues with N-hydroxysuccinimidyl acetate inactivates Ca2+-ATPase by modifying the catalytic site, and impairs stimulation by modulators by modifying residues outside this site [9]. Acetylation suppressed the ATP-dependent pNPPase with biphasic kinetics. ATP or pNPP during acetylation cancels the fast component of inactivation. Acetylation inhibited only partially the calmodulin-dependent pNPPase, but neither ATP nor pNPP prevented this inactivation. From these results we conclude: (i) ATP-dependent pNPPase depends on binding of ATP to the catalytic site; (ii) the catalytic site plays no role in calmodulin-dependent pNPPase. The decreased affinity for eosin-Y of the FITC-modified enzyme, suggests that the sites for these two molecules are closely related but not overlapped. Acetimidation of the pump inhibited totally the calmodulin-dependent pNPPase, but only partially the ATP-pNPPase. Since calmodulin binds to E1, the E1 conformation or the E2? E1 transition would be involved during calmodulin-dependent pNPPase activity. Received: 20 January 1998  相似文献   

20.
Conformation and microenvironment at the active site of 1,4-beta-D-glucan glucanohydrolase was probed with fluorescent chemo-affinity labeling using o-phthalaldehyde. OPTA has been known to form a fluorescent isoindole derivative by cross-linking the proximal thiol and amino groups of cysteine and lysine. Modification of lysine of the enzyme by TNBS and of cysteine residue by PHMB abolished the ability of the enzyme to form an isoindole derivative with OPTA. Kinetic analysis of the TNBS and PHMB-modified enzyme suggested the presence of essential lysine and cysteine residues, respectively, at the active site of the enzyme. The substrate protection of the enzyme with carboxymethylcellulose (CMC) confirmed the involvement of lysine and cysteine residues in the active site of the enzyme. Multiple sequence alignment of peptides obtained by tryptic digestion of the enzyme showed cysteine is one of the conserved amino acids corroborating the chemical modification studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号