首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation of embryonic stem (ES) cells from a pluripotent to a committed state involves global changes in genome expression patterns. Gene activity is critically determined by chromatin structure and interactions of chromatin binding proteins. Here, we show that major architectural chromatin proteins are hyperdynamic and bind loosely to chromatin in ES cells. Upon differentiation, the hyperdynamic proteins become immobilized on chromatin. Hyperdynamic binding is a property of pluripotent cells, but not of undifferentiated cells that are already lineage committed. ES cells lacking the nucleosome assembly factor HirA exhibit elevated levels of unbound histones, and formation of embryoid bodies is accelerated. In contrast, ES cells, in which the dynamic exchange of H1 is restricted, display differentiation arrest. We suggest that hyperdynamic binding of structural chromatin proteins is a functionally important hallmark of pluripotent ES cells that contributes to the maintenance of plasticity in undifferentiated ES cells and to establishing higher-order chromatin structure.  相似文献   

2.
Chell JM  Frisén J 《Cell Stem Cell》2012,11(3):282-284
Recently in Nature, Song et?al. (2012) show that the neurotransmitter GABA acts directly on radial glia-like neural stem cells to maintain quiescence and provide a mechanism for how neuronal activity controls the production of new neurons in the hippocampus.  相似文献   

3.
It has long been argued that cell cycle regulators such as cyclins, cyclin-dependent kinases and their inhibitors affect the fate of neuronal progenitor cells. Recently, we identified that cyclin D2, which localizes at the basal tip of the radial glial cell (i.e., the neural progenitor in the developing neocortex), functions to give differential cell fates to its daughter cells just after cell division. This basally biased localization is due to transportation of cyclin D2 mRNA via its unique cis-regulatory sequence and local translation into cyclin D2 protein at the basal endfoot. During division of the neural progenitor cells, cyclin D2 protein is inherited by the daughter cell that retain the basal process, resulting in asymmetric distribution of cyclin D2 protein between the two daughter cells. Cyclin D2 is similarly localized in the human fetal cortical primordium, suggesting a common mechanism for the maintenance of neural progenitors and a possible scenario in evolution of primate brains. Here we introduce our recent findings and discuss how cyclin D2 functions in mammalian brain development and evolution.  相似文献   

4.
5.
6.
The mammalian target of rapamycin, best known as mTOR, is a phylogenetically conserved serine/threonine kinase that controls life-defining cellular processes such as growth, metabolism, survival, and migration under the influence of multiple interacting proteins. Historically, the cellular activities blocked by rapamycin in mammalian cells were considered the only events controlled by mTOR. However, this paradigm changed with the discovery of two signaling complexes differentially sensitive to rapamycin, whose catalytic component is mTOR. The one sensitive to rapamycin, known as mTORC1, promotes protein synthesis in response to growth factors and nutrients via the phosphorylation of p70S6K and 4EBP1; while the other, known as mTORC2, promotes cell migration and survival via the activation of Rho GTPases and the phosphorylation of AKT, respectively. Although mTORC2 kinase activity is not inhibited by rapamycin, hours of incubation with this antibiotic can impede the assembly of this signaling complex. The direct mechanism by which mTORC2 leads to cell migration depends on its interaction with P-Rex1, a Rac-specific guanine nucleotide exchange factor, while additional indirect pathways involve the intervention of PKC or AKT, multifunctional ubiquitous serine/threonine kinases that activate effectors of cell migration upon being phosphorylated by mTORC2 in response to chemotactic signals. These mTORC2 effectors are altered in metastatic cancer. Numerous clinical trials are testing mTOR inhibitors as potential antineoplasic drugs. Here, we briefly review the actions of mTOR with emphasis on the controlling role of mTORC1 and mTORC2-interacting proteins and highlight the mechanisms linked to cell migration.  相似文献   

7.
8.
9.
BackgroundOsteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children and young adults. Metastases are a major clinical challenge in OS. In this context, 20% of OS patients are diagnosed with metastatic OS, but near 80% of all OS patients could present non-detectable micrometastases at the moment of diagnosis.MethodsOsteogenic differentiation; doxorubicin exclusion assay; fluorescence microscopy; RT-qPCR; proteomic analysis.ResultsOur results suggest that metastatic OS cells possess a diminished osteoblastic differentiation potential with a gain of metastatic traits like the capacity to modify intracellular localization of chemodrugs and higher levels of expression of stemness-related genes. On the opposite hand, non-metastatic OS cells possess bone-associated traits like higher osteoblastic differentiation and also an osteoblastic-inducer secretome. OS cells also differ in the nature of their interaction with mesenchymal stem cells (MSCs), with opposites impacts on MSCs phenotype and behavior.ConclusionsAll this suggests that a major trait acquired by metastatic cells is a switch into a stem-like state that could favor its survival in the pulmonary niche, opening new possibilities for personalized chemotherapeutic schemes.General significanceOur work provides new insights regarding differences among metastatic and non-metastatic OS cells, with particular emphasis on differentiation potential, multidrug resistance and interaction with MSCs.  相似文献   

10.
Pluripotent stem cells exist in naive and primed states, epitomized by mouse embryonic stem cells (ESCs) and the developmentally more advanced epiblast stem cells (EpiSCs; ref. 1). In the naive state of ESCs, the genome has an unusual open conformation and possesses a minimum of repressive epigenetic marks. In contrast, EpiSCs have activated the epigenetic machinery that supports differentiation towards the embryonic cell types. The transition from naive to primed pluripotency therefore represents a pivotal event in cellular differentiation. But the signals that control this fundamental differentiation step remain unclear. We show here that paracrine and autocrine Wnt signals are essential self-renewal factors for ESCs, and are required to inhibit their differentiation into EpiSCs. Moreover, we find that Wnt proteins in combination with the cytokine LIF are sufficient to support ESC self-renewal in the absence of any undefined factors, and support the derivation of new ESC lines, including ones from non-permissive mouse strains. Our results not only demonstrate that Wnt signals regulate the naive-to-primed pluripotency transition, but also identify Wnt as an essential and limiting ESC self-renewal factor.  相似文献   

11.
Two powerful technologies enabled studies of chromatin that revealed features potentially responsible for the pluripotency of embryonic stem cells (ESCs).  相似文献   

12.
13.
14.
Somatic stem cells are required for tissue development, homeostasis, and repair. Recent data suggested that previous biographical experiences of individual stem cells influence their behavior in the context of tissue formation and govern stem cell responses to external stimuli. Here we provide a concise review how a cell's biography, for example, previous rounds of cell divisions or the age-dependent accumulation of cellular damage, is remembered in stem cells and how previous experiences affect the segregation of cellular components, thus guiding cellular behavior in vertebrate stem cells. Further, we suggest future directions of research that may help to unravel the molecular underpinnings of how past experiences guide future cellular behavior.  相似文献   

15.
16.
Brain stem cells change their identity   总被引:1,自引:0,他引:1  
McKay RD 《Nature medicine》1999,5(3):261-262
  相似文献   

17.
18.
Human adipose tissue expresses all components necessary for the local production of angiotensin II, which has multiple functions in adipose tissue, ranging from regulation of local blood flow to complex influences on tissue homeostasis. Still the mechanisms controlling human adipose tissue angiotensin II concentrations are not yet known. We investigated whether angiotensin II is degraded by human primary cultured preadipocytes and adipocytes and which enzymes are responsible for its metabolism. Distinct but transient angiotensin II production was limited by degradation due to consecutive proteolytic cleavage by endopeptidase and aminopeptidase activities. The endopeptidase could be identified as neprilysin expressed on the surface of both preadipocytes and adipocytes. Degradation of angiotensin II was preceded by a lag phase that was considerably longer in preadipocytes. This time span could not be explained by an induction of neprilysin nor by an increase in its surface localization. Following the lag phase, adipocytes showed a higher degradation activity than preadipocytes as mirrored by increased neprilysin levels and activity measured in their membrane fractions. Our findings demonstrate that human preadipocytes and adipocytes differentially express functional neprilysin and aminopeptidase activity involved in the regulation of angiotensin II concentrations in human adipose tissue.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号