首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Mudd SH  Datko AH 《Plant physiology》1986,81(1):103-114
To provide information upon the ways in which Lemna paucicostata uses the methyl group of methionine, plants were grown for various periods (from 1 minute to 6.8 days) in the presence of a tracer dose of radioactive methyl-labeled methionine. Protein methionine accounted for approximately 19% of the accumulated methyl moieties; other methylated products, about 81%. The latter group included (percent of total methyl in parentheses): methylated ethanolamine derivatives (46%); methyl esters of the pellet (chiefly, or solely, pectin methyl esters) (15%); chlorophyll methyl esters (8%); unidentified neutral lipids (6%); nucleic acid derivatives (2-5%); methylated basic amino acids (2%). No other major methylated compounds were observed in any plant fraction. Available evidence suggests that little, if any, oxidation of the methyl group of methionine, directly or indirectly, occurs in Lemna. Our results indicate that S-methyl-methionine sulfonium is formed relatively rapidly, but does not accumulate at a commensurate rate, probably being reconverted to methionine. To our knowledge, this is the first time a reasonably complete accounting of the metabolic fate of methionine methyl has been obtained for any plant. The extent to which the results with Lemna may be representative of the situation for other higher plants is discussed.  相似文献   

2.
Rats deficient in folic acid were found to have decreased concentrations of S-adenosylmethione in brain, kidney, and liver. They also showed decreased concentrations of methionine in serum, but not in brain. Administration of l-dopa (a methyl acceptor) in doses comparable to those used in the treatment of Parkinson's disease caused significant reductions in the concentrations of brain methionine in rats deficient in folic acid (45%, 45 min after administration), but failed to alter methionine concentrations in control animals. The changes in brain methionine brought about by l-dopa were not paralleled by similar changes in serum methionine, which decreased by only 20%. These observations suggest that de novo methyl group synthesis contributes significantly to the maintenance of brain methionine concentrations. The possibility is raised that the daily requirements for folic acid and for vitamin B12 may be increased in human patients treated chronically with large doses of l-dopa.  相似文献   

3.
The effects of long-term insulin-dependent diabetes on the enzymatic activities of hepatic cytochrome P450 isozymes were determined in rats rendered diabetic by the administration of streptozotocin and killed 4, 8, and 12 weeks following treatment. The O-dealkylations of ethoxy-resorufin and pentoxyresorufin were elevated in the diabetic animals throughout the study, the extent of increase being similar at all three time points. p-Nitrophenol hydroxylase activity was induced in the diabetic animals 4 weeks following treatment with streptozotocin, but the extent of increase became less pronounced with the progress of the disease. A modest increase in ethylmorphine N-demethylase activity was also observed but only in the diabetic animals killed 4 weeks after the induction of diabetes. Finally, lauric acid hydroxylase activity was elevated in the diabetic animals 4 weeks following streptozotocin administration but then declined rapidly with the duration of the disease. It is concluded that the duration of diabetes modulates the hepatic cytochrome P450 profile, with the effect being isoenzyme specific. Mechanisms that may account for these changes are discussed.  相似文献   

4.
Modulation of arachidonic acid metabolism by Rous sarcoma virus   总被引:6,自引:0,他引:6       下载免费PDF全文
Arachidonic acid (C20:4) metabolites were released constitutively from wild-type Rous sarcoma virus-transformed chicken embryo fibroblasts (CEF). 3H-labeled C20:4 and its metabolites were released from unstimulated and uninfected CEF only in response to stimuli such as serum, phorbol ester, or the calcium ionophore A23187. High-pressure liquid chromatography analysis showed that the radioactivity released from [3H]arachidonate-labeled transformed cells was contained in free arachidonate and in the cyclooxygenase products prostaglandin E2 and prostaglandin F2 alpha; no lipoxygenase products were identified. The release of C20:4 and its metabolites from CEF infected with pp60src deletion mutants was correlated with serum-independent DNA synthesis and with the expression of the mRNA for 9E3, a gene expressed in Rous sarcoma virus-transformed cells which has homology with several mitogenic and inflammatory peptides. 3H-labeled C20:4 release was not correlated with p36 phosphorylation, which argues against a role for this protein as a phospholipase A2 inhibitor. CEF infected with other oncogenic viruses encoding a tyrosine kinase also released C20:4, as did CEF infected with viruses that contained mos and ras; however, infection with a crk-containing virus did not result in stimulation of 3H-labeled C20:4 release, suggesting that utilization of this signaling pathway is specific for particular transformation stimuli.  相似文献   

5.
The main objective of this study was to determine whether uncontrolled hyperglycemia, as a consequence of diabetes, altered the metabolism of acetylcholine (ACh) in rat brain. To accomplish this, rats received injections of streptozotocin (STZ, 60 mg/kg, i.v.) or vehicle, and were maintained for up to 7 weeks after the injections. Various indices of ACh metabolism were determined in striatum and hippocampus, two brain regions densely innervated by cholinergic neurons. STZ induced diabetes in 96% of the rats injected, as evidenced by glucose spillage into the urine within 48 hours. Serum glucose levels increased to 326% of control values by 1 week and remained at this level for the duration of the study. The steady-state concentrations of ACh and choline, determined in brain tissue from animals killed by head-focused microwave irradiation, did not differ between the control and STZ-injected groups. However, the synthesis and release of neurotransmitter by striatal slices, measured in vitro, decreased in a time-dependent manner. Although the basal release of ACh was unaltered at 1 week, neurotransmitter release decreased significantly by 21% at 5 weeks and by 26% at 7 weeks. The release of ACh evoked by incubation with 35 mM KCl was inhibited significantly by 20% at all time points studied. ACh synthesis by slices incubated under basal conditions decreased by 13% and 27% at 5- and 7-weeks, respectively, the latter significantly less than controls. Synthesis by striatal slices incubated with 35 mM KCl was inhibited by 17% at 7 weeks. Although the synthesis and release of ACh by hippocampal slices from diabetic animals tended to be less than controls, these alterations were not statistically significant. Investigations into the mechanism(s) mediating the deficit in ACh synthesis exhibited by striatal slices indicated that it did not involve alterations in precursor choline availability, nor could it be attributed to alterations in the activities of the synthetic or hydrolytic enzymes choline acetyltransferase or acetylcholinesterase; rather, the decreased turnover of ACh may be secondary to other STZ-induced, hyperglycemia-mediated neurochemical alterations.  相似文献   

6.
Impaired ascorbic acid metabolism in streptozotocin-induced diabetic rats   总被引:3,自引:0,他引:3  
Ascorbic acid (AA) metabolism in streptozotocin (STZ)-induced diabetic rats was determined by examining urinary excretion, renal reabsorption, reductive regeneration, and biosynthesis of AA at 3 and 14 days after STZ administration. AA concentrations in the plasma, liver, and kidney of the diabetic rats were significantly lower than those of controls on d 3, and decreased further as the diabetic state continued. Hepatic AA regeneration significantly decreased in the diabetic rats on d 3 in spite of increased gene expressions of AA regenerating enzymes and was further reduced on d 14. Hepatic activity of L-gulono-gamma-lactone oxidase, a terminal enzyme of hepatic AA biosynthesis, also decreased significantly on d 3 and decreased further on d 14. Urinary excretion of AA was significantly increased on d 3, with an increase in urine volume but no change in gene expressions of renal AA transporters (SVCT1 and SVCT2). Urinary excretion of AA was normalized on d 14. The results suggest that impaired hepatic and renal regeneration, as well as increased urinary excretion and impaired hepatic biosynthesis of AA, contributed to the decrease in AA in plasma and tissues of STZ-induced diabetic rats.  相似文献   

7.
The effect of lactation on a number of enzymes involved in transmethylation reactions and the secretion of major methyl compounds into milk have been examined in sheep. The activities of hepatic phospholipid methyltransferase and 5-methyltetrahydrofolate-homocysteine methyltransferase were significantly higher in lactating ewes, compared with those in non-lactating ewes, while the activity of both hepatic and pancreatic glycine methyltransferase was significantly lower in the lactating state. No differences were observed in the activities of hepatic guanidoacetate methyltransferase, betaine-homocysteine methyltransferase and cystathionine beta-synthase on lactation. These results suggest that the extra demand for methyl groups for the secretion of methyl compounds in the milk is facilitated by enhancing the rate of de novo methyl group synthesis and lowering the rate of physiologically nonessential methylation.  相似文献   

8.
Modulation of lipid metabolism and vitamin A by conjugated linoleic acid   总被引:1,自引:0,他引:1  
The term conjugated linoleic acid (CLA) refers to a collection of positional and geometrical isomers of octadeca- dienoic acid with conjugated double bonds. CLA has been shown to possess several beneficial activities in different experimental models, however, out of 28 isomers only two, c9, t11 and t10, c12 have been thus far demonstrated to be biologically active.The discovery that it can be elongated and desaturated as a regular fatty acid in human and animal tissues brought a new possibility that its activity may be related to its properties as a peculiar unsaturated fatty acid. In fact, CLA is able to be incorporated in lipid classes as oleic acid, accumulating in those tissues rich in neutral lipids; to be metabolized as linoleic acid and so influencing linoleic acid desaturation and elongation; and to be beta oxidized in peroxisomes which may account for, through activation of PPARs, its ability to increase free retinol levels and influence gene expression. These activities are amplified where CLA accumulates more such as mammary and adipose tissues and may explain its peculiar beneficial properties, at relative low dietary concentrations, in these tissues. Furthermore, it has been demonstrated that CLA can be endogenously formed by delta 9 desaturation of vaccenic acid (t11 18:1) thus forming the isomer c9, t11. Either endogenously formed or through dietary intake, CLA showed to be metabolized in the same way and to exert the same biological properties. We may conclude that a regular intake of CLA, or/and vaccenic acid as its precursor, should work as an excellent preventive agent by modulating lipid metabolism in target tissues thus conferring protection against the attack of insults of different type.  相似文献   

9.
The effects of streptozotocin-induced hyperglycemia on de novo myo-inositol biosynthesis in rat testis was examined. Testicular glucose and glucose 6-phosphate levels increased significantly 10 and 12 h after stretozotocin injection, respectively. However, testis myo-inositol content did not increase appreciably until 24 h following injection of the drug. Seventy-two hours after streptozotocin administration, testis myo-inositol levels were 2.7-fold higher in diabetic rats than in controls injected with citrate buffer. No changes were observed in the Specific activities of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and 1-l-myo-inositol-1-phosphatase (EC 3.1.3.25). However, hyperglycemic rats displayed testicular glucose and glucose 6-phosphate levels approximately 4- and 2-fold in excess of control values, respectively. Insulin treatment of diabetic rats resulted in the lowering of plasma glucose, and testis glucose 6-phosphate to normal or below normal levels within hours. Inositol levels remained significantly elevated compared with control animals, although slightly lower than that observed for untreated diabetic rats. Streptozotocin diabetic rats had a significantly decreased testis cytosolic NAD+NADH ratio compared with control animals 72 h after injection. The potential role of testis hexokinase distribution in the regulation of glucose 6-phosphate and myo-inositol biosynthesis in normal and diabetic rats was investigated. No significant differences in testis hexokinase distribution or in the kinetic characteristics of the soluble and particulate hexokinase activities were observed. Testicular sperm counts in streptozotocin diabetic rats were not significantly different from control values.  相似文献   

10.
It has been postulated that metabolites of the arachidonic acid pathway exert an important influence on hemostasis and thrombosis. This notion is based on in vitro experiments. We have utilized two experimental models to elucidate the physiologic roles of thromboxane A2 (TxA2) and prostacyclin (PGI2) in the modulation of thrombus formation. The role of TxA2 in promoting thrombus formation was evaluated in a rabbit model where the aorta was deendothelialized by a balloon catheter technique and indium-111-labeled platelets were used as a marker for quantifying platelet deposition. Both 1-benzylimidazole, a thromboxane synthase inhibitor, and 13-azaprostanoic acid, an antagonist of thromboxane/endoperoxide receptors significantly reduced the platelet deposition onto the damaged vessel wall. The data indicate the TxA2 plays an important role in thrombosis and hemostasis. The influence of PGI2 insufficiency due to accelerated PGI2 degradation on microvascular thrombosis was evaluated in a unique clinical disease, i.e. thrombotic thrombocytopenic purpura (TTP). Accelerated PGI2 degradation was observed in several patients with chronic TTP. The degradation abnormalities were corrected by plasma infusion in vivo or serum supplement in vitro. To test the hypothesis that PGI2 must be bound to serum macromolecules to prevent rapid hydrolysis, serum binding capacity for PGI2 was measured by Sephadex G-25 gel filtration. The binding capacity was significantly reduced in the patients and was corrected by serum supplement. Abnormalities of PGI2 binding were also noted in a group of patients with ischemic stroke. Our findings suggest that there exist in the serum certain constituents which bind and stabilize PGI2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Disturbance of methyl group metabolism in alloxan-diabetic sheep   总被引:1,自引:0,他引:1  
Alloxan-induced diabetes results in changes in the activities of a number of enzymes related to methyl group metabolism in sheep. Decreases in the activities of phospholipid methyltransferase and betaine-homocysteine methyltransferase in diabetic sheep liver indicate a reduced rate of choline synthesis and oxidation. A 65-fold increase in the activity of glycine methyltransferase and a 4-fold rise in the activity of gamma-cystathionase in diabetic sheep liver with elevated urinary excretion of cyst(e)ine suggest that catabolism of the methyl group of methionine and homocysteine was enhanced in the diabetic state.  相似文献   

12.
Diabetes, with only mild ketosis, was induced in male rats by a single injection of streptozotocin. After 12 weeks the specific activities of enzymes concerned with the metabolism of inositol and of inositol lipids were measured in various tissues. Inositol 1-phosphate synthase (EC 5.5.1.4) was most active in testis and the activity was significantly less in diabetic rats than in controls on a similar diet. Inositol oxygenase (EC 1.13.99.1), which converts myo-inositol into glucuronic acid, was also less active in kidney from diabetic animals. CDP-diacylglycerol-inositol phosphatidyltransferase (EC 2.7.8.11) and phosphatidylinositol 4-phosphate kinase (EC 2.7.1.68) showed decreased specific activities in brain and sciatic nerve of diabetic rats. By contrast the diabetic state did not affect the specific activities of phosphatidylinositol kinase (EC 2.7.1.67) or phosphatidylinositol 4,5-bisphosphate phosphatase (EC 3.1.3.36) in these tissues. The results are discussed in relation to diabetic neuropathy.  相似文献   

13.
The in vitro metabolism of all-trans-[11,12-3h]retinoic acid to several more polar compounds has been demonstrated in a hamster tracheal organ culture system. The production of these metabolites is dependent on the presence of tissue. The physiological significance of these compounds is shown by the cochromatography of several of the in vitro formed metabolites synthesized from [carboxy-14C]retinoic acid with metabolites isolated from the intestine and urine of hamsters previously injected with 0.1 to 1.5 microgram of [3H]retinoic acid. One of the metabolites shows about one-tenth the biological activity of all-trans-retinoic acid when tested in a hamster tracheal organ culture assay. This biologically active metabolite is converted by the hamster trachea in vitro to a biologically inactive metabolite.  相似文献   

14.
15.
Retinoids are essential for growth and cell differentiation of epithelial tissues. The effects of the food compounds phytol, the phytol metabolite phytanic acid, and the fatty acid docosahexaenoic acid (DHA) on the retinoid signaling pathway in intestinal cells were studied. Phytol inhibited the formation of all-trans-retinoic acid (RA) from dietary retinol in intestinal cells. Phytanic acid, a known retinoic X receptor (RXRalpha) and peroxisome proliferator activating receptor (PPARalpha) activator, also activated PPARdelta, and to a lesser degree PPARgamma, in a transactivation assay. Phytanic acid had no effect on intestinal RA hydroxylase CYP26 (also named P450RAI) gene expression and metabolism of all-trans-RA in intestinal Caco-2 cells. However, in combination with retinoic acid receptor (RAR)-ligands (all-trans-RA or synthetic Am580) phytanic acid enhanced the induction of CYP26 and RA-metabolism in comparison to treatments with all-trans-RA or Am580 alone. Also treatment with DHA did not affect CYP26 gene expression and RA-metabolism but cotreatment of the cells with DHA and all-trans-RA or Am580 enhanced the induction of CYP26, in comparison to the induction caused by all-trans-RA or Am580 alone. This study indicates that food compounds such as phytanic acid and DHA that are RXR-agonists and have an impact on intestinal CYP26 gene expression and metabolism of all-trans-RA in intestinal cells.  相似文献   

16.
Previous work by other authors has shown hat insulin administration increases brain tryptophan levels and serotonin (5–HT) metabolism. The present study partially replicates these results and tests whether these effects could be due to insulin-induced hypoglycemic stress, since stressers such as immobilization or food deprivation also increase brain tryptophan and 5-HT metabolism. Ingestion of a dextrose solution by rats administered insulin (2 I.U./kg) prevents the extreme fall in blood glucose concentration and rise in plasma corticosterone following insulin injections alone. This treatment, however, produces a larger increase in brain tryptophan (30%) than insulin-injected rats allowed only tap water. The greater accumulation of brain tryptophan may reflect an additive effect of the endogenously released insulin to that exogenously administered, since ingestion of the dextrose solution could trigger insulin secretion. In addition, brain tryptophan and 5-HT metabolism were measured in streptozotocin-diabetic rats maintained on several different feeding schedules to control for the effects of hyperphagia. All groups of diabetics showed significant decreases of approx 30% in brain tryptophan concentrations, while 5-HT metabolism was unchanged. This deficit in brain tryptophan is reversed within 2 h after insulin administration (2 I.U./kg). These results indicate that changes in brain tryptophan and 5-HT metabolism following insulin injections are not due to hypoglycemic stress, and that brain tryptophan is low in diabetics but increases above normal after administration of insulin. The results are discussed with respect to the effects of insulin on plasma levels of the neutral amino acids and a possible direct effect of insulin on the uptake of tryptophan by brain.  相似文献   

17.
18.
M. C. Astle  P. H. Rubery 《Planta》1985,166(2):252-258
The effects of methyl jasmonate and jasmonic acid on uptake of abscisic acid (ABA) by suspension-cultured runner-bean cells and subapical runner-bean root segments have been investigated. Increasing concentrations of methyl jasmonate inhibit ABA uptake by the cultured cells with a K i of 22±3 M. This is not due to cytoplasmic acidification or to effects on metabolism of ABA, and is not additive with inhibition of radioactive ABA uptake by nonradioactive ABA. Uptake of indol-3-yl acetic acid (IAA) is unaffected by methyl jasmonate. The maximum effect of nonradioactive ABA in inhibiting uptake of radioactive ABA, previously shown to reflect saturation of an ABA carrier, is generally greater than the effect of maximally inhibitory concentrations of methyl jasmonate. Similar results were obtained with root segments, but longer incubation times were necessary to observe inhibitory effects of methyl jasmonate. Demethylation of methyl jasmonate to jasmonic acid does not appear to be required since similar concentrations of jasmonic acid had no observable direct effect on ABA uptake other than that attributable to cytoplasmic acidification. Histidine reagents, a proton ionophore and acidic external pH all affect in parallel the inhibition by methyl jasmonate and nonradioactive ABA of uptake of radioactive ABA by the cultured cells. There is no effect of ABA or nonradioactive methyl jasmonate on uptake of radioactive methyl jasmonate by the cultured cells. It is proposed that methyl jasmonate interacts with the ABA carrier. Various models for this interaction are discussed.Abbreviations ABA abscisic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3-yl acetic acid  相似文献   

19.
20.
The aim of this study was to investigate the preventive effect of Agrocybe chaxingu polysaccharide on streptozocin (STZ)-induced pancreatic β-cells destruction. Agrocybe chaxingu polysaccharide markedly reduced nitric oxide (NO) production and iNOS expression levels in RINm5F cells in a dose-dependent manner. In addition, Agrocybe chaxingu polysaccharide significantly inhibited iNOS expression and blood glucose levels in STZ-induced diabetic mice. Moreover, immunohistochemical analysis revealed that it enhanced pancreatic β-cells resistance to destruction by STZ. These results suggest that Agrocybe chaxingu polysaccharide may have value as a therapeutic agent against diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号