首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide sequence of the 3' two-thirds of a highly conserved, molecularly cloned human cellular src gene (c-src) has been determined. This region of the c-src gene encodes the tyrosine kinase domain of the cellular src protein (pp60c-src) and corresponds to exons 6 through 12 of the chicken c-src gene, as well as nucleotides 545 to 1542 of the Rous sarcoma virus src gene (v-src). The human c-src sequence is very strongly conserved with respect to both the chicken c-src and the Rous sarcoma virus v-src genes, with nearly 90% nucleotide homology observed in this region. Amino acid sequence conservation in this region is even greater; 98% of the amino acids are conserved between human and chicken c-src. Furthermore, the exon sizes and the locations of the exon-intron boundaries are identical in the human and chicken c-src genes. However, sequences within the introns have not been conserved, and the introns within the human c-src gene are significantly larger than the corresponding introns within the chicken c-src gene. The strong amino acid conservation between the carboxy-terminal two-thirds of pp60c-src of species as divergent as humans and chickens suggests that this portion of the pp60c-src protein specifies one or more functional domains that are of great importance to some aspect of normal cellular growth or differentiation.  相似文献   

2.
Four molecular clones containing DNA homologous to the Rous sarcoma virus transforming gene (src) have been isolated from a random library of normal chicken DNA. The four clones are distinct overlapping isolates, which together span approximately 33 kb of cellular DNA. The cloned locus appears to represent the major region of chicken DNA homologous to src, since src-containing restriction fragments of this locus account for the fragments detected by hybridization of src-specific probe to restriction digests of total chicken DNA. Analysis of the cloned chicken src locus by restriction and heteroduplex mapping indicates that the locus contains 1.6-1.9 kb of DNA homologous to the viral src gene. The chicken DNA sequences homologous to viral src are interrupted by five or six nonhomologous regions, totaling approximately 6 kb, which presumably represent introns in the cellular src gene.  相似文献   

3.
We screened a recombinant chicken DNA/lambda phage library for sequences homologous to the transformation-specific sequences of the avian acute leukemia virus MC29 by hybridization with molecularly cloned MC29 proviral DNA. Three cellular DNA clones were found and compared with each other and with the viral genome by physical mapping with restriction endonucleases and by heteroduplex analysis. These experiments indicated that the three cellular clones overlap and represent a single cellular locus. The RNA genome of MC29 and normal cell DNA share a homologous region of 1.6 kilobases which is interrupted in the cellular DNA by 1.0 kilobase of sequences not present in the viral genome. Hybridization of the cloned cellular DNA to viral RNA and analysis of the protected viral RNA by fingerprinting techniques indicated that there is extensive sequence homology between the helper virus-unrelated mcv sequences of the viral RNA and the cellular DNA, with only minor base differences. The cellular mcv locus, however, lacks all helper virus-related sequences of MC29, including those of the partial viral gag gene which, together with mcv, encodes the probable transforming protein of MC29. We conclude that although the mcv locus of the normal cell does not represent a complete structural homolog to the onc gene of MC29, it is probably the precursor to the onc-specific sequence in the virus.  相似文献   

4.
Isolation of duplicated human c-src genes located on chromosomes 1 and 20.   总被引:23,自引:11,他引:12  
The oncogene (v-src) of Rous sarcoma virus apparently arose by transduction of the chicken gene known as c-src(chicken). We isolated DNA fragments representative of two src-related loci from recombinant DNA bacteriophage libraries of the human genome. One of these loci, c-src1(human), appeared to direct the synthesis of a 5-kilobase polyadenylated RNA that presumably encodes pp60c-src(human). Probes specific for the other locus, c-src2(human), did not hybridize to polyadenylated RNA prepared from a variety of human cell lines. Partial nucleotide sequence determinations of the loci demonstrated that c-src1(human) is highly related to chicken c-src and that c-src2(human) is slightly more divergent. The sequences imply that the final two coding exons of each human locus are identical in length to those of chicken c-src and that the location of an amber stop codon is unchanged in all three loci. c-src1(human) has been mapped to chromosome 20, and the second locus is located on chromosome 1. We conclude that c-src1(human) is the analog of c-src(chicken) and that the duplicated locus, c-src2(human), may also be expressed.  相似文献   

5.
R A Hipskind  S G Clarkson 《Cell》1983,34(3):881-890
We determined the nucleotide sequences of all coding regions and a significant part of the flanking regions of the chicken c-src gene, which is a cellular homolog of the v-src gene of Rous sarcoma virus. The c-src gene consists of 12 exons; the boundaries of the exons were determined by assuming that the amino acid sequence of its product, pp60c-src, is basically the same as that of pp60v-src. The deduced amino acid sequence of pp60c-src was very similar to that of pp60v-src, but the last 19 carboxy-terminal amino acids of pp60c-src were replaced by a new set of 12 amino acids of pp60v-src. The sequence encoding the carboxy-terminal sequence of pp60v-src was found 900 bp downstream from the termination codon of the c-src gene. We suggest that the c-src sequence was captured by a virus through recombination at both sides of the c-src gene, and that the recombinations occurred at the level of proviral DNA.  相似文献   

6.
Two clones containing the human immune interferon-gamma (IFN-gamma) chromosomal gene were isolated from a human DNA library present in lambda Charon4A phage. DNA from these clones specified biologically active interferon upon injection into the nuclei of Xenopus laevis oocytes. Analysis of the clones revealed that they were derived from the same chromosomal segment. Restriction fragments that hybridized with 32P-labeled cDNA probes were subcloned into plasmids and the complete sequence of the IFN-gamma gene was determined. Unlike IFNs-alpha and -beta, IFN-gamma does contain introns. Their presence was also revealed by electron microscopy. It is intriguing that the smallest of the three introns is located just in the middle of the Glu-Glu sequence which is conserved among all three forms of interferon at approximately the same position. The promoter region was found to contain a prototype TATA box, many palindromic structures and several repeating sequences and two symmetrical structures. Particularly interesting was the existence of two sequences homologous to those present in the chicken albumin and the human IFN-beta gene promoter region. A sequence GTGTTG common to several other genes was found in the region approximately 10 nucleotides downstream from the polyadenylation site.  相似文献   

7.
The chicken cellular proto-oncogene c-src was cotransfected into normal Rat-1 cells with the mouse dhfr gene. Selection for amplification of dhfr sequences resulted in co-amplification of the chicken c-src gene. Cell clones expressing varying levels of c-src associated kinase activity were isolated, none of these had a transformed morphology. In contrast, expression of v-src in Rat-1 cells resulted in morphological transformation and the ability to grow in soft agar in an anchorage independent way.  相似文献   

8.
Characterization of cDNA clones for the human c-yes gene.   总被引:32,自引:15,他引:17       下载免费PDF全文
Three c-yes cDNA clones were obtained from poly(A)+ RNA of human embryo fibroblasts. Sequence analysis of the clones showed that they contained inserts corresponding to nearly full-length human c-yes mRNA, which could encode a polypeptide of 543 amino acids with a relative molecular weight (Mr) of 60,801. The predicted amino acid sequence of the protein has no apparent membrane-spanning region or suspected ligand binding domain and closely resembles pp60c-src. Comparison of the sequences of c-yes and v-yes revealed that the v-yes gene contains most of the c-yes coding sequence except the region encoding its extreme carboxyl terminus. The region missing from the v-yes protein is the part that is highly conserved in cellular gene products of the protein-tyrosine kinase family.  相似文献   

9.
We have previously shown that Rous sarcoma virus variants that carry the cellular homolog (c-src) of the viral src gene (v-src) do not transform chicken embryo fibroblasts. We also have shown that replacement of sequences upstream or downstream from the BglI site of the cellular src gene with the corresponding regions of v-src restored transforming activity to the hybrid genes. Since there are only six amino acid changes between p60c-src and p60v-src within the sequences upstream from BglI, we constructed chimeric molecules involving v-src and c-src to determine the effect of each amino acid substitution on the biological activities of the gene product. We found that the change from Thr to Ile at position 338 or the replacement of a fragment of c-src containing Gly-63, Arg-95, and Thr-96 with a corresponding fragment of v-src containing Asp-63, Trp-95, and Ile-96 converted p60c-src into a transforming protein by the criteria of focus formation, anchorage-independent growth, and tumor formation in newborn chickens. These mutations also resulted in elevation of the protein kinase activity of p60c-src.  相似文献   

10.
Molecular evolution of the mammalian ribosomal protein gene, RPS14   总被引:4,自引:0,他引:4  
Ribosomal protein S14 genes (RPS14) in eukaryotic species from protozoa to primates exhibit dramatically different intron-exon structures yet share homologous polypeptide-coding sequences. To recognize common features of RPS14 gene architectures in closely related mammalian species and to evaluate similarities in their noncoding DNA sequences, we isolated the intron-containing S14 locus from Chinese hamster ovary (CHO) cell DNA by using a PCR strategy and compared it with human RPS14. We found that rodent and primate S14 genes are composed of identical protein-coding exons interrupted by introns at four conserved DNA sites. However, the structures of corresponding CHO and human RPS14 introns differ significantly. Nonetheless, individual intron splice donor, splice acceptor, and upstream flanking motifs have been conserved within mammalian S14 homologues as well as within RPS14 gene fragments PCR amplified from other vertebrate genera (birds and bony fish). Our data indicate that noncoding, intronic DNA sequences within highly conserved, single-copy ribosomal protein genes are useful molecular landmarks for phylogenetic analysis of closely related vertebrate species.   相似文献   

11.
12.
13.
To further characterize the gene structure of the proto-oncogene c-src and the mechanism for the genesis of the v-src sequence in Rous sarcoma virus, we have analyzed genomic and cDNA copies of the chicken c-src gene. From a cDNA library of chicken embryo fibroblasts, we isolated and sequenced several overlapping cDNA clones covering the full length of the 4-kb c-src mRNA. The cDNA sequence contains a 1.84-kb sequence downstream from the 1.6-kb pp60c-src coding region. An open reading frame of 217 amino acids, called sdr (src downstream region), was found 105 nucleotides from the termination codon for pp60c-src. Within the 3' noncoding region, a 39-bp sequence corresponding to the 3' end of the RSV v-src was detected 660 bases downstream of the pp60c-src termination codon. The presence of this sequence in the c-src mRNA exon supports a model involving an RNA intermediate during transduction of the c-src sequence. The 5' region of the c-src cDNA was determined by analyzing several cDNA clones generated by conventional cloning methods and by polymerase chain reaction. Sequences of these chicken embryo fibroblast clones plus two c-src cDNA clones isolated from a brain cDNA library show that there is considerable heterogeneity in sequences upstream from the c-src coding sequence. Within this region, which contains at least 300 nucleotides upstream of the translational initiation site in exon 2, there exist at least two exons in each cDNA which fall into five cDNA classes. Four unique 5' exon sequences, designated exons UE1, UE2, UEX, and UEY, were observed. All of them are spliced to the previously characterized c-src exons 1 and 2 with the exception of type 2 cDNA. In type 2, the exon 1 is spliced to a novel downstream exon, designated exon 1a, which maps in the region of the c-src DNA defined previously as intron 1. Exon UE1 is rich in G+C content and is mapped at 7.8 kb upstream from exon 1. This exon is also present in the two cDNA clones from the brain cDNA library. Exon UE2 is located at 8.5 kb upstream from exon 1. The precise locations of exons UEX and UEY have not been determined, but both are more than 12 kb upstream from exon 1. The existence and exon arrangements of these 5' cDNAs were further confirmed by RNase protection assays and polymerase chain reactions using specific primers. Our findings indicate that the heterogeneity in the 5' sequences of the c-src mRNAs results from differential splicing and perhaps use of distinct initiation sites. All of these RNAs have the potential of coding for pp60c-src, since their 5' exons are all eventually joined to exon 2.  相似文献   

14.
A single locus (designated c-fes) in the human genome which exhibits homology to the transformation-specific onc gene (v-fes) of Snyder-Theilen feline sarcoma virus was identified by the Southern blot technique. Recombinant clones containing 16- to 18-kilobase inserts of human DNA including the c-fes locus were constructed. Restriction endonuclease mapping of these clones verified their identity with native human c-fes and demonstrated the presence of at least two sequences in human c-fes interrupting v-fes-homologous regions. The v-fes-homologous locus in the human genome spans about 4 kilobases. The 5'-3' orientation of the c-fes clones with respect to feline sarcoma virus proviral DNA was determined. The region of the human genome that is homologous to v-fes is proximal to the highly reiterated human Alu sequence but not to the highly reiterated human alphoid sequence.  相似文献   

15.
16.
17.
18.
We describe the isolation of two recombinant lambda phages, each containing genomic DNA fragments encoding both the major adult alpha- and beta-globin mRNAs of X. laevis. The DNA fragment in the two clones have restriction maps which indicate that they are each derived from a different member of the pair of alleles present in the heterozygote used as the source of DNA for cloning. The characterization of these two clones by restriction mapping, R looping and DNA sequencing shows that the alpha 1- and beta 1-globin genes lie in the orientation separated by 7.7 kb of DNA. There are two introns in the alpha 1-globin gene and two in the beta 1-globin gene, and they interrupt the genes at exactly the same positions as the introns found in all known mammalian alpha- and beta-globin genes. The exon sequences proximal to the introns show a much higher degree of homology with mammalian sequences than the sequences distal to intron/exon junctions, and the introns in the beta 1-globin gene of X. laevis are very similar in length to the corresponding introns in the beta-globin genes of several mammals and the chicken.  相似文献   

19.
Chick vigilin cRNA clones were used to isolate the cognate human gene, by screening a pWE15 genomic library. Three independent cosmid clones were isolated and characterized by restriction mapping. The gene was identified by sequencing an internal EcoRI fragment containing two exons homologous to exon 24 and 25 of the chicken vigilin gene and corresponding to nucleotides 1973–2104 of the human HBP-cDNA. The homology between the chicken and human sequences was 77% and 82% at the cDNA level, and 91% and 100% at the amino acid level. In addition, the analyzed intron/exon boundaries were invariantly conserved. The 5 and 3 regions of the human gene were mapped by Southern analysis of the respective clones with synthetic oligonucleotides. The entire vigilin gene spans a region of about 50 kb and has been assigned to chromosome 2q36–q37.2 (FL-pter value of 0.96 ± 0.03) by fluorescence in situ hybridization to metaphase spreads from normal peripheral blood lymphocytes. The vigilin gene is localized in a chromosomal region comprising a cluster of collagen genes (COLIVA3, COLVIA3) and the locus of the Waardenburg syndrome I. Only one mRNA species of 4.4 kb is transcribed from the human vigilin gene. In accordance with previous observations on chicken mRNA, the expression of the human vigilin mRNA depends on the stage of cytodifferentiation both in vitro and in situ.  相似文献   

20.
Recovered avian sarcoma viruses are recombinants between transformation-defective mutants of Rous sarcoma virus and the chicken cellular gene homologous to the src gene of Rous sarcoma virus. We have constructed and analyzed molecular clones of viral deoxyribonucleic acid from recovered avian sarcoma virus and its transformation-competent progenitor, the Schmidt-Ruppin A strain of Rous sarcoma virus. A 2.0-megadalton EcoRI fragment containing the entire src gene from each of these clones was subcloned and characterized. These fragments were also used as probes to isolate recombinant phage clones containing the cellular counterpart of the viral src gene, termed cellular src, from a lambda library of chicken deoxyribonucleic acid. The structure of cellular src was analyzed by restriction endonuclease mapping and electron microscopy. Restriction endonuclease mapping revealed extensive similarity between the src regions of Rous sarcoma virus and recovered avian sarcoma virus, but striking differences between the viral src's and cellular src. Electron microscopic analysis of heteroduplexes between recovered virus src and cellular src revealed a 1.8-kilobase region of homology. In the cellular gene, the homologous region was interrupted by seven nonhomologous regions which we interpret to be intervening sequences. We estimate the minimum length of cellular src to be about 7.2 kilobases. These findings have implications concerning the mechanism of formation of recovered virus src and possibly other cell-derived retrovirus transforming genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号