首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protocorm-like body (PLB) and subsequent shoot development in hybrid Cymbidium Twilight Moon ‘Day Light’ can be established in vitro via 3 pathways: PLBs, PLB thin cell layers (TCLs), or embryogenic callus (EC). Traditionally Cymbidium hybrids are mass-produced commercially through the neo-formation of secondary PLBs (2° PLB) from initial or primary PLBs (1° PLB) or PLB segments, or from PLB TCLs, resulting in a moderate number of 2° PLBs (average 4.46 2° PLBs/1° bisected PLB, or 1.12 2° PLBs/ PLB TCL). This study shows that EC can be induced from 1° PLBs or PLB TCLs. Thereafter, resulting 2° PLBs (average 22.1 2° PLBs/EC cluster derived from 1° PLB) form directly from the EC on the same medium or following the transfer of EC onto PGR-free medium. By flow cytometry and PCR-RAPD analysis, the cytogenetic stability of 1° PLBs, of resulting 2° PLBs and EC, and plants derived therefrom was demonstrated.  相似文献   

2.
An efficient method of mass propagation of Dendrobium chrysotoxum Lindl. was developed using a shoot-tip culture system. Both direct and callus-mediated formation of protocorm-like bodies (PLBs) occurred from the basal cut surface of explants. Frequency of callusing was best in the presence of 2 μM thidiazuron (TDZ) or N6-benzylaminopurine (BAP). The callus exhibited complete hormone autonomy for growth and differentiation of PLBs and was maintained for 18 months without any exogenous growth regulators, an aspect important for minimising somaclonal variation. However, the rate of callus growth and PLB formation varied with application of cytokinin and auxin. In addition, the callus exhibited a differential sensitivity to the exogenous cytokinins. While BAP promoted callus growth and PLB differentiation, TDZ was inhibitory to callus mediated PLB formation and caused extensive necrosis of callus. Although α-naphthaleneacetic acid (NAA) had no significant effect on the induction of callus, subsequent growth was best in its presence. Using a 3-month subculture period, a 69-fold increase in callus weight was achieved with 0.5 μM NAA, while as many as 133 PLBs could be obtained per 100 mg callus in the presence of 1 μM NAA. For direct PLB formation, the optimum cytokinin dosage was dependent upon the type of cytokinin used. While TDZ was most effective at a concentration of 1 μM (15 PLBs per explant), for similar PLB yield the application of 8 μM BAP was essential.  相似文献   

3.
Breeding linseed (Linum usitatissimum L.) using haploid techniques allows breeders to develop new cultivars in a shorter time period. Many research groups successfully created new linseed genotypes through anther culture; however ovary culture has been the subject of only a few earlier studies. In the present study, the effect of genotype and growth regulators combination on callus induction and shoots regeneration in ovary culture of nine commercially important linseed cultivars was investigated. Ovaries were cultured on modified MS medium supplemented with three different combinations of plant growth regulators. Variable callogenic responses were expressed by all of the genotypes tested on different induction media. The results suggested that specific combination of growth regulators for callus induction must be designed for each genotype. Shoot regeneration from ovary derived callus is a critical phase of the whole gynogenetic process. Differences in adventitious shoot formation frequency among genotypes were demonstrated and four responsive genotypes have been selected. Ovary derived callus from cultivar ‘Mikael’ manifested the highest adventitious shoot formation frequency with a high number of shoots per explant. The optimum ratio of growth regulators for shoot regeneration was shown to depend on the genotype. Cultivars ‘Linola’, ‘Mikael’ and ‘Szaphir’ showed the highest shoot regeneration frequency when callus had originated on induction medium supplemented with 2 mg L−1 BAP and 2 mg L−1 NAA, while combination of 1 mg L−1 BAP and 2 mg L−1 IAA promoted shoot formation in ovary-derived callus of ‘Barbara’. The highest rate of shoots per explant has been obtained in second subculture.  相似文献   

4.
Paphiopedilum orchids are among the world’s most popular orchid due to their impressively beautiful flowers. Propagation of these orchid genera has been hampered by the naturally slow growth rate of the plant, which renders it very difficult to be propagated through conventional methods. In vitro culture techniques have provided a useful alternative technology for propagating this recalcitrant species. In this study, the propagation of P. rothschildianum was achieved through the in vitro formation of secondary protocorm-like bodies (PLBs) from the primary PLB that developed from stem-derived callus. The PLBs were cultured on half-strength MS medium supplemented with different concentrations (1.0, 2.0, 3.0, and 4.0 μM) of 6-benzyladenine (BA) and kinetin for the induction of secondary PLBs. The highest number of secondary PLBs formed was obtained on half-strength MS medium supplemented with 4.0 μM kinetin, with an average of 4.1 PLBs per explant after 8 weeks of culture. The secondary PLBs continued to proliferate further and formed 9.5–12.1 new PLBs per secondary PLB after being subcultured onto half-strength plant growth regulator-free MS medium supplemented with 60 g/L banana homogenate (BH). These tertiary PLBs were subcultured onto media containing different organic additives, such as BH, coconut water, potato homogenate, and tomato homogenate, for plantlet regeneration. Among the organic additives tested, the addition of 20% CW to half-strength MS medium resulted in the best average plantlet regeneration percentage from the PLBs, 67.9%, after 8 weeks of culture.  相似文献   

5.
Root apex conversion ofCatasetum fimbriatum into protocorm-like bodies (PLBs) can occur in the absence of any added plant growth regulator. The presence of exogenous auxins in media drastically reduced the number of PLBs formed; on the other hand the concentrations of these auxins used greatly increased the process of callus formation. No effect on the mean number of root tip conversions into PLBs was observed with chlorogenic acid. However, this process was significantly increased in one of the concentrations used of p-coumaric acid. BA did not have any effect on callus formation, but caused marked acceleration in the process of root tip conversion and on the mean number of PLBs formed. PLB formation observed in the absence of any exogenous growth substance seemed to reflect a disruption in the interactions between the excised roots and the rest of the plants. The presence of light decreased the process of conversion.  相似文献   

6.
Callus induction and somatic embryogenesis of Phalaenopsis   总被引:23,自引:0,他引:23  
Callus induction and plant regeneration through somatic embryogenesis in Phalaenopsis Richard Shaffer `Santa Cruz' were examined. Protocorm-like body (PLB) segments formed calli in Vacin and Went medium with sucrose. The optimal concentration of sucrose was 40 g ⋅ l–1. Medium containing 200 ml ⋅ l–1 coconut water together with 40 g ⋅ l–1 sucrose was effective for callus induction. Gellan gum was suitable than agar as a gelling agent for callus induction. The calli easily formed PLBs after being transferred to a medium without sucrose. Histological observation suggested that the PLBs were somatic embryos. No variation was observed in the flowering plants regenerated through somatic embryogenesis. Received: 11 June 1997 / Revision received: 6 October 1997 / Accepted: 18 October 1997  相似文献   

7.
以文心兰切花品种'南茜'无菌苗为材料,取其茎尖通过组织培养诱导形成原球茎和幼苗,观察并分析了原球茎各形态发生阶段的特征及其可溶性糖和蛋白质含量、抗氧化酶(POD、CAT和SOD)活性以及相关同功酶(POD、EST和SOD)的变化.结果显示:(1)文心兰原球茎形态发生可分为外植体期、外植体膨大期、愈伤组织期、原球茎形成期、原球茎成熟期、叶鞘伸展期、顶端腋芽发育期及幼苗期8个阶段.(2)可溶性糖和蛋白质含量均在叶鞘伸展期出现最大峰值;POD活性在外植体膨大期、CAT和SOD活性在愈伤组织期分别出现最大峰值.SOD同工酶的2条酶带在愈伤组织期到幼苗期交替出现;EST同工酶在原球茎形成期有2条特异酶带.研究表明,可溶性糖和蛋白质的含量以及POD、CAT、SOD活性的特异变化与文心兰茎尖脱分化及原球茎再分化的实现密切相关,不同类型的同工酶在原球茎同一发生阶段表现出较大差异,EST同工酶的2条特异酶带可作为原球茎形成的标志.  相似文献   

8.
Stem nodal segments of a sympodial orchid, Zygopetalum mackayi, were used as explants to induce protocorm-like body (PLB) formation on a hormone-free 1/2 Murashige and Skoog (1962) modified medium (1/2MS-0) or 1/2MS supplemented with 0.045–4.54 μM 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea [TDZ] in light. After 1 mo of culture, pale to dark green, compact and irregular nodulars of PLBs formed from the explants. For PLB induction, TDZ had no significant effect on the percentage of PLB formation but promoted mean numbers of PLBs per responding explant at 0.045–4.54 μM. For plant conversion, PLBs were transferred onto the same basal medium devoid of TDZ. After 2–3 mo of culture, these PLBs successfully formed shoots and then roots with normal morphology. For PLB proliferation, TDZ has no significant effects on the fresh weight of PLB aggregates, but there is significantly retarded shoot development at 0.45–4.54 μM after 1 mo of culture. When transferring these PLB aggregates onto hormone-free medium for plant conversion, PLBs derived from TDZ-containing medium showed a decrease of shoot length (0.86–2.08 cm in shoot length) compared to those derived from 1/2MS-0 (2.74 cm in shoot length) after 1 mo of culture. Gibberellin A3 [GA3] at 0.29–8.66 μM significantly retarded PLB proliferation, but at 0.03 and 0.29 μM resulted in longer shoot length than the control treatment. Histological studies reveal that shoot development originated from the outer region of PLB aggregates. The young shoots initially connected to each other at their basal tissues with the parental PLBs. Plants were successfully obtained from PLBs and then gradually became more loosely connected with each other as well as with the parental aggregates. Several dozen plants were acclimatized in the greenhouse and showed normal morphology.  相似文献   

9.
Response of twenty eight cultivars of durum wheat (Triticum turgidum var. durum) to immature embryo culture, callus production and in vitro salt tolerance was evaluated. For assessment of cultivars to salt tolerance, growing morphogenic calli were exposed to different concentrations of NaCl (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.1% w/v) added to the culture medium during two subsequent subcultures (4 weeks each). Comparison of cultivars for callus induction from immature embryo was based on callus induction frequency and fresh weight growth of callus (FWG). While, for salt tolerance, the relative fresh weight growth (RFWG) and necrosis percent of callus were used. There were significant differences among cultivars for potential of regeneration from immature embryo, and ‘Shahivandi’ a native durum wheat cultivar originating from western Iran was superior among the cultivars tested. The FWG distinguished cultivars more than callus induction frequency did for callus induction evaluation. Hence, a range of FWG from 1.23 to 14.65 g was observed in ‘Mexical-75’ and ‘Omrabi-5’ cultivars, respectively. Growing calli derived from cultivars ‘PI 40100’ and ‘Dipper-6’ showed superiority for tolerating salinity under in vitro conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Rapid propagation of Phalaenopsis from floral stalk-derived leaves   总被引:1,自引:0,他引:1  
Summary An efficient and rapid in vitro method was developed for regeneration of Phalaenopsis using leaf segments derived in vitro from flower stalk nodes. Leaf segments of four cultivars Tinny Sunshine ‘Annie’, ‘Taisuco Hatarot’, Teipei Gold ‘Golden Star’, Tinny Galaxy ‘Annie’ cultured on Murashige and Skoog medium supplemented with N 6-benzyladenine (BA; 88,8 μM) and α-naphthaleneacetic acid (NAA; 5,4 μM) produced an average of 10–13 protocorm-like bodies (PLBs) after 12 wk. PLB proliferation was achieved on a modified Hyponex medium (1 gl−1 6.5N−4.5P−19K+20N−20P−20K+2gl−1 peplone +3% (w/v) potato homogenate +0.05% activated 1 gl−1 charcoal) and an optimal number of 13–18 PLBs developed from single PLB sections of different cultivars. Plantlet development was also achieved on a modified Hyponex medium. By repeated subculture of PLBs on a proliferation medium, and culturing them in the plantlet regeneration medium, plantlets could be produced continuously. Approximately 6 mo, were required from the initiation of culture to the production of plantlets for transplant to community pots.  相似文献   

11.
The prolamellar body (PLB) proteome of dark-grown wheat leaves was characterized. PLBs are formed not only in etioplasts but also in chloroplasts in young developing leaves during the night, yet their function is not fully understood. Highly purified PLBs were prepared from 7-day-old dark-grown leaves and identified by their spectral properties as revealed by low-temperature fluorescence spectroscopy. The PLB preparation had no contamination of extra-plastidal proteins, and only two envelope proteins were found. The PLB proteome was analysed by a combination of 1-D SDS-PAGE and nano-LC FTICR MS. The identification of chlorophyll synthase in the PLB fraction is the first time this enzyme protein was found in extracts of dark-grown plants. This finding is in agreement with its previous localization to PLBs using activity studies. NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyses the reduction of protochlorophyllide to chlorophyllide, dominates the proteome of PLBs. Besides the identification of the PORA protein, the PORB protein was identified for the first time in dark-grown wheat. Altogether 64 unique proteins, representing pigment biosynthesis, photosynthetic light reaction, Calvin cycle proteins, chaperones and protein synthesis, were identified. The in number of proteins’ largest group was the one involved in photosynthetic light reactions. This fact strengthens the assumption that the PLB membranes are precursors to the thylakoids and used for the formation of the photosynthetic membranes during greening. The present work is important to enhance our understanding of the significance of PLBs in chloroplast development.  相似文献   

12.
The embryogenic callus was induced from shoot apex tissues of Oncidium ‘Gower Ramsey’, and the derived callus cultures maintained more than 5 years were viable in growth and exhibited high regeneration capability. Combination levels of exogenous 2,4-dichlorophenoxyacetic acid (2,4-D) and thidiazuron (TDZ) could stepwise change granular and yellow callus into more friable or compact morphotypes. In the 16-h photoperiod culture, the influences of various carbohydrate sources including sucrose, maltose and trehalose were assessed on formation and development of protocorm-like body (PLB) from the embryogenic callus. Histological observations showed a unicellular origin for these PLBs. The growth of plantlets regenerated on half-strength Murashige and Skoog (MS) medium supplemented with maltose or trehalose was significantly better than those regenerated on sucrose. Approximately, 6000 PLBs could be generated in 2 months from an initial culture of 1 g callus fresh weight, and then more than half of the PLBs developed into plants in 4 months after two subcultures on the medium supplemented with 20 g/l trehalose.  相似文献   

13.
Summary Carbohydrate type and concentration and their interactive effects on in vitro shoot proliferation of three lingonberry (Vaccinium vitis-idaea ssp. vitis-idaea L.) cultivars (‘Regal’, ‘Splendor’, and ‘Erntedank’) and two V. vitis-idaea ssp. minus (Lodd) clones (‘NL1’ and ‘NL2’) were studied. Nodal explants were grown in vitro on medium with 2 μM zeatin and either glucose, sorbitol, or sucrose at a concentration of 0, 10, 20, or 30 gl−1. The interactive effects of carbohydrate type and concentration and genotype were important for shoot proliferation. The best response was afforded by sucrose at 20 gl−1 both in terms of explant response and shoot developing potential, although glucose supported shoot growth equally well, and in ‘NL1’ at 10 gl−1 it resulted in better in vitro growth than sucrose. Carbohydrate concentration had little effect on shoot vigor. The genotypes differed in terms of shoots per explant, length, and vigor, leaves per shoot, and callus formation at the base of explants; this was manifested with various types and concentrations of carbohydrate. Changing the positioning of explants on the medium from vertically upright to horizontal increased the shoot and callus size, but decreased shoot height and leaves per shoot. Proliferated shoots were rooted on a peat:perlite (1∶1, v/v) medium and the plantlets were acclimatized and eventually established in the greenhouse.  相似文献   

14.
High-frequency protocorm-like body (PLB) formation directly from thin leaf sections of Doritaenopsis hybrid was achieved in order to develop a mass-scale propagation system. Concentrated efforts were made to study the effects of different cytokinins on in vitro PLB induction from thin leaf sections. Among the cytokinins tested, thidiazuron (TDZ) was found to be a more effective inducer of PLBs than benzyladenine and zeatin. A modified Murashige and Skoog medium supplemented with 9.0 µM TDZ was found to be the optimum concentration for PLB development from thin leaf sections of Doritaenopsis hybrid. Of the two different explant types used in the present experiment, the highest percentage of PLB formation (72.3%) and highest number of PLBs (18) per explant were observed on thin leaf sections (1 mm thick), while only 20% (4.3 per explant) of comparatively large leaf segments (5 mm thick) were able to produce PLBs under the same culture conditions. Light microscopy observations indicated that the initial cell divisions for PLB formation occurred on the region near the cut surface and that an intact epidermal layer appeared to play an important role in PLB formation. Proembryo initiation occurred from several cells just beneath the intact epidermal cell, and globular PLBs were clearly visible after 3 weeks of culture and subsequently developed into mature PLBs.  相似文献   

15.
Summary Callus was initiated from in vitro-grown plants of Gladiolus cultivars ‘Jenny Lee’ and ‘Florida Flame.’ The age of callus used for regeneration of plants was either 9 mo. old or 8 yr old from ‘Jenny Lee,’ and 4 mo. old from ‘Florida Flame.’ Regeneration medium consisted of Murashige and Skoog’s basal salts medium supplemented with 2.0 mg/l (9.3 μM) kinetin. This medium was supplemented with various concentrations of either bialaphos (Meiji Seika, Tokyo, Japan) or phosphinothricin (Hoechst-Roussell, Frankfurt, Germany). Bialaphos was more effective than phosphinothricin at stimulating plant regeneration. Plants regenerated from 8-yr-old callus of ‘Jenny Lee’ only when the regeneration medium was supplemented with 0.10 mg/l bialaphos. A bialaphos concentration of 0.01 mg/l stimulated regeneration from 9-mo.-old callus of cultivar ‘Jenny Lee’ and 4-mo.-old callus of ‘Florida Flame.’  相似文献   

16.
An efficient system was established for a higher frequency of protocorm-like body (PLB) formation from the callus of Dendrobium candidum Wall ex Lindl. The calluses were induced from longitudinally bisected segments of protocorms and subcultured two times every 40d on Murashige and Skoog medium with macronutrients at half strength, micronutrients at full strength, 2% sucrose, and with 8.8μM 6-Benzylaminopurine. PLB formation was achieved when calluses were transferred onto the same basal medium without any plant growth regulators. PLBs developed into intact plantlets about 2cm in height and with four roots when on basal medium with 2.7μM 1-naphthaleneacetic acid. Plantlets were transplanted into vermiculite with a 95% survival rate in a greenhouse. Histological observations proved that globular somatic embryos could be produced from the inside and surface of the embryogenic callus during PLB formation.  相似文献   

17.
Summary An improved protocol for shoot regeneration from hypocotyl segments of seedlings from open-pollinated seeds of lingonberry (Vaccinium vitis-idaea L.) cultivars, ‘Ida’, ‘Splendor’, and ‘Erntesegen’, and a native clone from Newfoundland was developed. The effect of thidiazuron (TDZ) on adventitious bud and shoot formation from apical, central, and basal segments of the hypocotyl was tested. Highly regenerative callus was obtained from hypocotyl segments on modified Murashige and Skoog (MMS) medium containing 5–10 μM TDZ. A maximum of 10 buds and 12 shoots per apical segment for seedlings of cultivar ‘Ida’ regenerated on MMS containing 10 μM TDZ. Callus and bud regeneration frequency, callus growth, and number of buds and shoots per regenerating explant depended not only on the specific segment of the hypocotyl, but also on parental genotype. Inhibition of shoot elongation by TDZ was overcome by transferring shoot cultures to a shoot proliferation medium containing 1–2 μM zeatin. The optimal concentration of sucrose for shoot elongation was 20 gl−1. Shoots were rooted ex vitro on a 2 peat: 1 perlite (v/v) medium after dipping in 0.8% indole-3-butyric acid, and rooted plants acclimatized readily under greenhouse conditions.  相似文献   

18.
Summary Turfgrass, like other major crop species, is recalcitrant to manipulation in vitro. To perform efficient genetic transformation of turfgrass, it is necessary to optimize tissue culture conditions. In most reports, plant tissue culture techniques have been applied to propagate a single cultivar or several cultivars in one species of turfgrass. In this experiment, four turfgrass genera were used, namely common bermudagrass, Cynodon dactylon [L.] Pers. (California origin); red fescue, Festuca rubra L. var. rubra ‘Shadow’; perennial ryegrass, Lolium perenne L. ‘Barbal’; and Kentucky bluegrass, Poa pratensis L. ‘Merion.’ Mature seeds were surface-sterilized and cultured on basal Murashige and Skoog (MS) media supplemented with 30–250 μM 2,4-dichlorophenoxyacetic acid (2,4-D) for callus induction. Regeneration media consisted of MS supplemented with 5–10 μM 6-benzyladenine (BA). Among the genera, Poa had the higest callus induction percentage (CIP) regardless of 2,4-D concentration, followed by Cynodon, Lolium, and Festuca, respectively. Cynodon and Lolium had the highest callus regeneration percentage (CRP) and overall regeneration rate (ORR). Festuca had a poor CIP, CRP, and ORR compared to other studied genera. Cynodon produced the highest shoot number per explant. Based on the results of the present study, MS medium supplemented with 60 μM 2,4-D (for callus induction) and 7.5 μM BA (for regeneration) can be used in multi-generic transformation studies with the genera used.  相似文献   

19.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

20.
Efficient in vitro regeneration systems for Vaccinium species   总被引:1,自引:0,他引:1  
Efficient protocols for shoot regeneration from leaf explants suitable for micropropagation as well as for the development of transgenic plants were developed for blueberry (Vaccinium corymbosum) and lingonberry (Vaccinium vitis-idaea) cultivars. Nodal segments were used to initiate in vitro shoot cultures of lingonberry cultivar ‘Red Pearl’ and southern highbush blueberry cultivar ‘Ozarkblue’. In order to develop an optimized regeneration procedure, different types and concentrations of plant growth regulators were tested to induce adventitious shoot regeneration on excised leaves from micropropagated shoots of both cultivars. The effect on percentage regeneration and number of shoots per explant was investigated. Results indicated that zeatin was superior to TDZ and meta-topolin in promoting adventitious shoot formation. A concentration of 20 μM zeatin was most effective in promoting shoot regeneration in both cultivars, in case of ‘Red Pearl’ along with 1 μM NAA. Shoots were either allowed to root in vitro on medium containing IBA or NAA or ex vitro in a fog tunnel. IBA was superior to NAA for induction of root development in vitro in both Vaccinium cultivars. Ex vitro rooting under high humidity was tested with cuttings from mature field-grown plants, from acclimatized tissue culture derived plants and with unrooted in vitro proliferated shoots planted directly. It was found that in vitro shoots rooted better under fog than cuttings from the other plant sources and rooting was equivalent to that achieved in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号